

Renewable energy financial decisions: a multicriteria approach

Ana M. García Bernabeu angarber@upv.es

Universitat Politècnica de València

Index

- 1 Lines of Research
 - Team

Research interest

- 2 MCDM in RE Investments
 - Introduction
 - Methodology
 - Illustrative Example
- 3 Conclusions and Further research

Index of contents

- 1 Lines of Research
 - Team

Research interest

- 2 MCDM in RE Investments Introduction Methodology Illustrative Example
- 3 Conclusions and Further research

Team at UPV- UMH- UO

Grupo Multicriterio Alcoy

Universidad Politécnica de Valencia (Alcoy)

Coordinadora: Ana M. García Bernabeu

angarber@upv.es

Líneas de Investigación: MCDM and financial decisions; MCDM and renewable energy decisions; Socially Responsible Investments

Otros Miembros del Nodo:

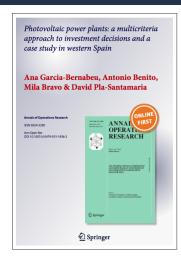
- · David Pla Santamaría
- Mila Bravo Sellés
- Antonio Benito
- Ignacio Gonzalez Vañó
- Fernando Mayor Vitoria
- · Javier Reig Mullor

Research interest

Ann Oper Res (2013) 205:189–201 DOI 10.1007/s10479-012-1243-x

Portfolio optimization based on downside risk: a mean-semivariance efficient frontier from Dow Jones blue chips

D. Pla-Santamaria · M. Bravo


Published online: 15 November 2012 © Springer Science+Business Media New York 2012

Keywords

Banking management and funds –Portfolio selection –Downside risk – Efficient frontiers – Semivariance – Dow Jones

Our Research

- Compromise programming
- Renewable energy
- Guaranteed prices
- Stochastic cash flows
- Multicriteria decision making analysis

Our Research

- Part I. Critical Issues in Ethical Investment
- Part II. Goal Programming and SRI Funds
- Part III. Compromise Programming and SRI Funds
- Part IV. Other Decision-Making Support Methods

Index of contents

- Lines of ResearchTeamResearch interes
- 2 MCDM in RE Investments Introduction Methodology Illustrative Example
- 3 Conclusions and Further research

- Research on new financing techniques for RE projects has gained interest in recent years due to the rising awareness of environmental issues.
- MCDM methodologies are widely used in RE investments.
- There is a lack of research on the financial aspects of RE projects (Ludeke-Freund and Loock, 2011)

Renewable Energy Decision-Making

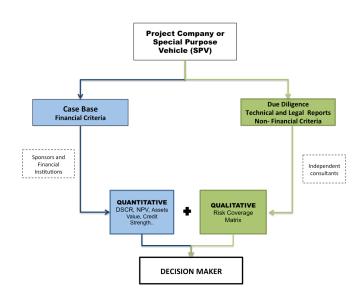
Selecting the right source of energy to invest in is an issue which involves many factors, policies and situations, so renewable energy decision-making can be considered as a multiple criteria decision-making (MCDM) problem.

Purposes

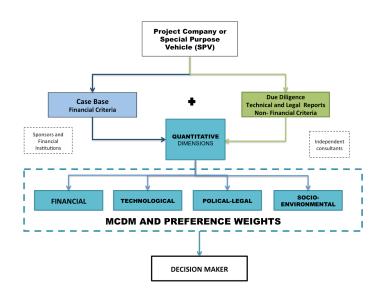
What kind of Renewable Energy (RE) project configuration do lenders prefer to finance?

- To propose a AHP-VIKOR model considering financial and non-financial perspective to rank a portfolio of RE projects.
- II. To develop an illustrative example of RE projects by using the proposed MPDM model with empirical information.

Users



- Banks
- Corporate planners (Sponsors)
- Individual or Institutional investors
- Fund managers
- Financial consultants
- Energy economists
- Energy researchers in universities


MCDM model

- 1 Decision criteria and dimensions
- 2 First step: Normalization
- **3** Second step: AHP–Preference weights
- 4 Third step: VIKOR and scoring

Decision Criteria: Traditional esqueme

Decision Criteria: Our proposal

Dimensions and criteria

Table: Dimensions D_1 - D_4 and their corresponding criteria

D_1	Financial	D_2	Technological	D_3	Political-Legal	D_4	Socio- Environmental
C_{11}	DSCR	C_{21}	Source Variablity	C_{31}	Country Risk	C_{41}	Contribution to the employment
C_{12}	Net Present Value	C_{22}	Fuel Cost	C_{32}	Support from the administration	C_{42}	Social acceptance
C_{13}	Asseet Value	C_{23}	Processing complexity	C_{33}	Currency risk	C_{43}	Negative impact in environment
C_{14}	Credit Strength of Sponsors						
C_{15}	Credit Support						

When the criterion is the more the better the normalized N_{ij} value is computed by:

$$N_{ij} = \frac{C_{ij} - C_{jmin}}{C_{jmax} - C_{jmin}} \tag{1}$$

If some criterion was the more the worse, then, this could be converted into "the more the better" N_{ij} normalized value by the following equation:

$$N_{ij} = \frac{C_{jmax} - C_{ij}}{C_{jmax} - C_{jmin}} \tag{2}$$

We propose the use of the variable D_{ih} as the average of the N_{ij} values for the criteria included.

$$D_{ih} = \sum_{h=1}^{m} N_{ij}/n \quad i = 1, 2 \dots m$$
 (3)

Second step: AHP preference weights

- Hierarchy structure: goal of the decision problem, criteria/dimensions, and alternatives
- Relative importance: Saaty Rating Scale

Table: The Saaty Rating Scale

Intensity of importance	Definition	Explanation
1	Equal importance	Two factors contribute equally to the objective
3	Somewhat more important	Experience and judgement slightly favour one over the other
5	Much more important	Experience and judgement very strongly favour one over the other
7	Veru much more important	Experience and judgement very strongly favour one over the other. Its importance is demonstrated in practice
9	Absolutely more important	The evidence favouring one over the other is of the highest possible validity
2,4,6,8	Intermediate values	When compromise is needed

Source: Own elaboration based in (Saaty, 1980).

$$L_{pj} = \left\{ \sum_{i=1}^{n} \left[w_i \frac{f_i^* - f_{ij}}{f_i^* - f_i^-} \right]^p \right\}^{1/p} \qquad 1 \le p \le \infty, \ j = 1, 2, \dots, J$$
 (4)

When the p metric is equal to 1, namely, L_1 metric allows to obtain the S_j value as follows:

$$S_{j} = \sum_{i=1}^{n} w_{i} \frac{f_{i}^{*} - f_{ij}}{f_{i}^{*} - f_{i}^{-}} \quad R_{j} = \max_{j} \left[w_{i} \frac{f_{i}^{*} - f_{ij}}{f_{i}^{*} - f_{i}^{-}} \right]$$
 (5)

 $\min S_j$ is considered as the "majority" rule $\min R_j$ is the "opponent".

$$Q_j = v \frac{S_j - S^*}{S^- - S^*} + (1 - v) \frac{R_j - R^*}{R^- - R^*}$$
 (6)

Empirical information, application and results

- (a) Information on RE projects
- (b) Dimensions and Criteria
- (c) AHP-VIKOR methodology
- (d) Results

Information on RE projects

Table: Basic information on the RE projects opportunity set

No	Project Type		Power	Investment	Country
P_1	ENCE	Biomass	50	135	Spain
P_2	Alconera	Photovoltaic	15	120	Spain
P_3	Solarpack	Photovoltaic	25	83	Chile
P_4	Paracuru	Wind	24	260	Brazil
P_5	Guanacaste	Wind	75	25	Costa Rica
P_6	Malaspina	Wind	50	81	Argentina
P_7	Aura Solar	Photovoltaic	300	100	Mexico
P_8	Pedrado Sal	Wind	24	11	Brazil
P_9	Artilleros	Wind	65	107	Uruguay
P_{10}	Les Borges	Biomass	22	153	Spain

Dimensions and criteria

Table: Dimensions D_1 - D_4 and their corresponding criteria

	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
C11	1.00	0.80	0.25	0.50	0.00	0.35	0.50	0.25	0.75	0.50
C12	0.46	0.33	0.40	0.41	0.00	0.58	1.00	0.08	0.67	0.07
C13	0.56	0.62	0.79	0.00	0.60	0.80	0.71	1.00	0.68	0.48
C14	0.00	1.00	0.50	0.25	0.75	0.25	0.25	0.00	0.50	0.25
C15	0.25	0.63	0.88	0.00	1.00	0.13	0.38	0.38	0.63	0.25
C21	1.00	1.00	0.60	0.20	0.00	0.20	0.20	0.20	0.40	1.00
C22	1.00	0.75	0.00	1.00	0.25	0.50	1.00	1.00	1.00	0.00
C23	1.00	0.50	0.75	0.00	0.00	0.50	0.00	0.25	0.50	0.75
C31	0.86	0.86	0.29	0.57	0.00	0.43	0.57	0.43	0.71	1.00
C32	1.00	1.00	1.00	0.33	0.33	0.00	0.33	0.33	0.33	1.00
C33	0.67	0.33	0.00	1.00	0.67	0.33	1.00	0.67	0.33	0.00
C41	0.11	0.23	0.55	0.81	0.09	0.00	1.00	0.77	0.62	0.30
C42	0.80	0.20	0.20	0.80	0.80	1.00	0.60	0.80	0.80	0.00
C44	1.00	0.57	0.00	0.86	1.00	0.43	1.00	0.57	0.86	0.14

Illustrative Example

AHP-VIKOR. First step: Normalization

Table: Normalized Dimensions D_1 - D_4

	D1	D2	D3	D4
P1	0.45	1.00	0.84	0.64
P2	0.68	0.75	0.73	0.34
P3	0.56	0.45	0.43	0.25
P4	0.23	0.40	0.63	0.82
P5	0.47	0.08	0.33	0.63
P6	0.42	0.40	0.25	0.48
P7	0.57	0.40	0.63	0.87
P8	0.34	0.48	0.48	0.72
P9	0.64	0.63	0.46	0.76
P10	0.31	0.58	0.67	0.15

Illustrative Example

AHP-VIKOR. Second Step: AHP Preference weights

AHP dimensions matrix =
$$\begin{pmatrix} 1 & 3 & 6 & 9 \\ 1/3 & 1 & 1 & 3 \\ 1/6 & 1 & 1 & 5 \\ 1/9 & 1/3 & 1/5 & 1 \end{pmatrix}$$

AHP Preferences weights

$$w_1 = 0.604$$
 $w_2 = 0.171$ $w_3 = 0.173$ $w_4 = 0.053$ $CI = 0.08$

Ana M. Garcia-Bernabeu

AHP-VIKOR. Third Step: VIKOR scores

Table: RE projects and their S_j and R_J values

	S_j	R_j
P1	0.3172	0.3023
P2	0.1100	0.0466
P3	0.4048	0.1552
P4	0.7722	0.6040
P5	0.5986	0.2806
P6	0.6375	0.3481
P7	0.3133	0.1479
P8	0.6573	0.4565
P9	0.2170	0.0986
P10	0.6693	0.4996
max	0.7722	0.6040
min	0.1100	0.0466

AHP-VIKOR. Third Step: VIKOR scores

Table: Values of Q_j for different v levels

	0	0.25	0.5	0.75	1
P4	0	0	0	0	0
P10	0.187	0.179	0.171	0.163	0.155
P8	0.265	0.242	0.219	0.196	0.174
P6	0.459	0.395	0.331	0.267	0.203
P5	0.580	0.501	0.421	0.342	0.262
P1	0.541	0.578	0.614	0.651	0.687
P3	0.805	0.743	0.680	0.617	0.555
P7	0.818	0.787	0.756	0.724	0.693
P9	0.907	0.890	0.873	0.855	0.838
P2	1.000	1.000	1.000	1.000	1.000

Solar Pack: Pozo Almonte Chile

Les Borgues: Termosolar - Biomasa Spain

Index of contents

- 1 Lines of Research Team Research interes
- 2 MCDM in RE Investments Introduction Methodology Illustrative Example
- 3 Conclusions and Further research

Conclusions

- One of the most effective way to reduce greenhouse emissions is to promote RE investments.
- The problem of financing RE projects becomes a crucial issue for public and private decision makers.
- Project Finance is a recent method widely used in RE projects (off-balance financing, cash flow related lending, risk sharing).
- MCDM models offers a method to rank RE projects to be financed from multiple criteria.
- Financial, Political-Legal, Technological and Socio-Environmental dimensions are considered in the decision making process.
- This research can be a first step towards understanding lenders preferences for RE projects.

Further research

- To better define and measure some of the criterion.
- To make a sensitive analysis for different dimensions and criteria.
- To apply the proposed methodology to other opportunity sets.

References

- Akella, AK, RP Saini, and Mahendra Pal S. (2009). Social, economical and environmental impacts of renewable energy systems. Renewable Energy 34.2, 390–396.
- Brans, J.P. and Kunsch, P.L. (2010). Ethics in operations research and sustainable development. International Transactions in Operational Research, 17(4), 427–444.
- Cardenas M., Hasvic, I., Johnstone, Silva, J., Ferey, A. (2015). Renewable Energy Policies and Private Sector Investment: Evidence from Financial Microdata. Environmental and Resource Economics, 62 (1), 163–188.
- Ballestero, E (2000). Project finance: A multi-criteria approach to arbitration. Journal of the Operational Research Society, 183–97.

References

- Garcia-Bernabeu, A. et al. (2015). Photovoltaic power plants: a multicriteria approach to investment decisions and a case study in western Spain. Annals of Operations Research, 1–13.
- Frankfurt School of Finance & Management (2016). Global trends in renewable energy investments. UNEP Report.
- Kaya, T., Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy vikor & AHP methodology: The case of Istanbul. Energy 35(6), 2517–2527.
- San Cristobal, J.R. (2011). Multi-criteria decision-making in the selection of a renewable energy project in Spain: the Vikor method. Renewable Energy. 36 (2), 498–502.

Next Challenge

THE INTERNATIONAL CONFERENCE ON MULTIDIMENSIONAL FINANCE, INSURANCE AND INVESTMENT

2016 (SPAIN 26 · 29

I hope to see you in Alcoy
THANK YOU FOR YOUR ATTENTION

Ana M. Garcia-Bernabeu