

X Reunión del GEDM – Universidad CEU San Pablo, Madrid

VETO VALUES IN GROUP DECISION MAKING WITH INCOMPLETE INFORMATION WITHIN MAUT

Antonio Jiménez¹, Eduardo Gallego², Alfonso Mateos¹, Juan A. Fernández del Pozo¹

¹Departamento de Inteligencia Artificial ²Departamento de Energía Nuclear Universidad Politécnica de Madrid (UPM)

- 1. Introduction
- 2. Problem structuring
- 3. Countermeasures and their impacts
- 4. Quantifying DM's preferences (component utilities, weights and vetoes)
- 5. Evaluation of alternatives (dominance measuring methods)
- 6. Aggregating the rankings

1. Introduction

1. Introduction

ILLUSTRATIVE EXAMPLE

Selection of optimal remedial strategies for restoring radionuclide contaminated aquatic ecosystem and drainage areas

EUROPEAN PROJECTS

- MOIRA, 4th EU Framework Programme. 1996-1998.
- COMETES, International Cooperation Programme INCO-COPERNICUS. 1998-2001.
- EVANET-HYDRA, 5th EU Framework Programme. 2001-2004.
- EURANOS, 6th EU Framework Programme, 2004-2008.

1. Introduction

LAKE PALANCOSO (EXTREMADURA, SPAIN)

Surface area of roughly 100,000 m²
Catchment area is 5 times the size of the lake
Depth is highly variable over the year
Situated at 270 m above sea level

Not a source of drinking water, Status of **special protection area for birds**

Attracts a lot of **tourists**, due to birdwatching, some of the birds being in danger of extinction.

- 1. Introduction
- 2. Problem structuring
- 3. Countermeasures and their impacts
- 4. Quantifying DM's preferences (component utilities, weights and vetoes)
- 5. Evaluation of alternatives (dominance measuring methods)
- 6. Aggregating the rankings

2. Problem structuring

Table 1. Heribates with continuous scale	Table	1.	Attributes	with	$\operatorname{continuous}$	scale
--	-------	----	------------	------	-----------------------------	------------------------

	Unit	Range
X_1 : Lake Ecosystem Index	LEI	[1,5]
X_3 : Dose Crit. Indiv.	mSv	[0,500]
X_4 : Collective Dose	mSv × person	$[0,12 \times 10^4]$
X_5 : Amount of Fish	Tonnes	[0, 100]
X_6 : Ban Duration	Months	[0, 360]
X_7 : Costs to Economy	Euros	$[0, 10^8]$
X_8 : Application Cost	Euros	$[0, 10^7]$

- 1. Introduction
- 2. Problem structuring
- 3. Countermeasures and their impacts
- 4. Quantifying DM's preferences (component utilities, weights and vetoes)
- 5. Evaluation of alternatives (dominance measuring methods)
- 6. Aggregating the rankings

3. Countermeasures and their impacts

- $-A_1, A_2$: Potassium addition
- A_3 : Lake liming
- $-A_4, A_5$: Wetland liming
- A_6 : Fertilization
- A_7 : Removal of contaminated bottom sediments
- $-A_8$: Treatment of contaminated fish and Bans on fish consumption
- A_9 : No action

					-				
	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9
X_1 : L. Ecosyst. Index	1.33	1.33	1.332	1.630	1.618	1.962	1.33	1.33	1.33
X_3 : Dose Crit. Indiv.	43.7	41.9	45.2	44.8	41.9	44.8	20.7	1.7	45.3
X_4 : Collective Dose	3490	3360	3630	3590	3360	3560	1690	180	3630
X_5 : Amount of Fish	0	0	0	0	0	0	0	36	0
X_6 : Ban Duration	0	0	0	0	0	0	0	120	0
X_7 : Costs to Economy	0	0	0	0	0	0	0	62300	0
X_8 : Application Cost	2242	7830	1052	4209	11807	38	3156390	0	0

 Table 2. Countermeasure impacts

A 20% deviation was introduced in X_1 and X_8 , a 10% for X_5 and X_7 ; and deviations ranging from -10% to +30% were used to derive the least and most impact for attributes X_3 and X_4 , respectively.

- 1. Introduction
- 2. Problem structuring
- 3. Countermeasures and their impacts
- 4. Quantifying DM's preferences (component utilities, weights and vetoes)
- 5. Evaluation of alternatives (dominance measuring methods)
- 6. Aggregating the rankings

4. Quantifying DM's preferences: Experts

D. Cancio, former Head of the Public and Environmental Radiological Protection Unit (CIEMAT, *Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas*

P. Carboneras, former Director of the Safety and Licensing Department at ENRESA (*Empresa Nacional de Residuos Radiactivos S.A.*)

E. Gallego, Professor of Nuclear Engineering at the UPM and public and environmental radiological protection expert.

Another expert assuming a more ecological role (DM_4) was also involved in the analysis.

4. Quantifying DM's preferences: attribute weights

T	Table 5. Ordinal information concerning weights						
Ordinal information							
$\overline{DM_1}$	$w_3^1 > w_8^1 > w_9^1 > w_4^1 > \{w_5^1, w_6^1\} > w_7^1 > w_2^1 > w_1^1$						
DM_2	$w_3^2 > w_4^2 > w_9^2 > w_6^2 > w_8^2 > w_7^2 > w_1^2 > w_2^2 > w_5^2$						
DM_3	$\{w_3^3, w_4^3\} > w_8^3 > w_6^3 > w_9^3 > w_7^3 > \{w_1^3, w_2^3, w_5^3\}$						
DM_4	$\{w_1^4, w_2^4\} > \{w_3^4, w_4^4\} > \{w_5^4, w_6^4\} > \{w_7^4, w_8^4\} > w_9^4$						

Table 6. Ordinal information about the difference between the weights

DM	Ordinal information
DM_1	$\Delta_{1,\{3,8\}} > \Delta_{1,\{9,4\}} > \{\Delta_{1,\{6,7\}}, \Delta_{1,\{7,2\}}\} > \{\Delta_{1,\{8,9\}}, \Delta_{1,\{4,5\}}, \Delta_{1,\{2,1\}}\}$
DM_2	$\Delta_{2,\{1,2\}} > \Delta_{2,\{2,5\}} > \Delta_{2,\{4,9\}} > \{\Delta_{2,\{3,4\}}, \Delta_{2,\{9,6\}}, \Delta_{2,\{6,8\}}, \Delta_{2,\{8,7\}}, \Delta_{2,\{7,1\}}\}$
DM_3	$\Delta_{3,\{4,8\}} > \Delta_{3,\{8,6\}} > \Delta_{3,\{6,9\}} > \Delta_{3,\{9,7\}} > \Delta_{3,\{7,1\}}$

4. Quantifying DM's preferences: component utilities

Table 3. Ordinal information concerning performances						
Ordinal information						
X_2 : Dose to Fish	$A_7 > \{A_2, A_3, A_4, A_5, A_6, A_8, A_9\} > A_1$					
X_9 : Cost to Image DM_1	$\{A_1, A_2, A_3, A_4, A_5, A_6\} > A_8 > A_7$					
DM_2	$A_7 > \{A_1, A_2, A_3, A_4, A_5, A_6\} > A_8 > A_9$					
DM_3	$A_7 > \{A_2, A_5\} > \{A_1, A_3, A_4, A_6\} > A_8 > A_9$					
DM_4	$\{A_6, A_7, A_8\} > \{A_3, A_4\} > \{A_1, A_2, A_5\} > A_9$					

Table 4. Ordinal information about the difference between the values

	Ordinal information
X_2 : Dose to Fish	$\varDelta_{2,\{7,2\}} > \varDelta_{2,\{9,1\}}$
X_9 : Cost to Image DM_1	$arDelta_{9,\{8,7\}} > arDelta_{9,\{6,8\}}$
DM_2	$\varDelta_{9,\{7,1\}} > \varDelta_{9,\{8,9\}} > \varDelta_{9,\{6,8\}}$
DM_3	$\Delta_{9,\{7,2\}} > \Delta_{9,\{8,9\}} > \{\Delta_{9,\{5,1\}}, \Delta_{9,\{6,8\}}\}$

4. Quantifying DM's preferences: veto values

4. Quantifying DM's preferences: veto values

Example (adjust function)

The adjust range is [20, 50], 50 being the highest veto value provided by the DMs. Three of the k - r less important DMs have pro-

Three of the k - r less important DMs have provided the veto values 23, 28 and 35

4. Quantifying DM's preferences: veto values

Veto ranges $X_1: [1.7, 5]$ $X_3: [100, 500]$ $X_6: [24, 360]$

 A_6 : Fertilization: its impact interval for X_1 is [1.766, 2.354]

A₈: Treatment of contaminated fish and Bans on fish consumption: its impact on X_6 is 36

5. Evaluation of alternatives: Extension of the Additive model

The adaptation of the additive multi-attribute utility function to account for the veto and adjust functions is:

$$u^{s}(A_{i}) = \left[\sum_{j=1}^{n} u_{j}(x_{ij})w_{j}^{s}d_{j}(A_{i})\right] \times v(A_{i})$$

- *s* refers to the *s*-th DM,
- w_{j}^{s} is the weight of the *j*-th attribute for the *s*-th DM,

 $v(A_i)$ is the value output by the veto function for the alternative A_i ,

- $d_j(A_i)$ is the value output by the adjust function for the alternative A_i in the attribute X_j , and
- $u_j(x_{ij})$ is the component utility corresponding to the performance x_{ij} .

- 1. Introduction
- 2. Problem structuring
- 3. Countermeasures and their impacts
- 4. Quantifying DM's preferences (component utilities, weights and vetoes)
- 5. **Evaluation of alternatives** (dominance measuring methods)
- 6. Aggregating the rankings

5. Evaluation of alternatives: Dominance measuring methods

$D^l = $	$egin{array}{ccc} - & l \ D_{21}^l \ D_{31}^l & l \end{array}$	$D_{12}^l \cdots$ - ··· $D_{32}^l \cdots$	· $D^{l}_{1(m-1)}$ · $D^{l}_{2(m-1)}$ · $D^{l}_{3(m-1)}$	$egin{array}{c} D_{1m}^l \ D_{2m}^l \ D_{3m}^l \end{array}$	where	
	\vdots $D_{m1}^l I$	\vdots \vdots D_{m2}^l \cdots	$\vdots \\ \cdot D^l_{m(m-1)}$	÷)		

$$\begin{split} D_{ks}^{l} &= \min\{u^{l}(A_{k}) - u^{l}(A_{s})\} \\ s.t. & u_{j}^{l}(x_{kj}), u_{j}^{l}(x_{sj}) \in U_{j}^{l}, j = 1, ..., n_{s} \\ \mathbf{w}^{l} &= (w_{1}^{l}, ..., w_{n}^{l}) \in W^{l}, \end{split}$$
 with

$$u^{l}(A_{i}) = \left[\sum_{j=1}^{n} u_{j}^{l}(x_{ij})w_{j}^{l}d_{j}(A_{i})\right] \times v(A_{i}).$$

$D^1 =$	$ \begin{pmatrix} - & -0.1569 & -0.1746 & -0.1362 & -0.1042 & -0.1466 & -0.1272 \\ -0.1956 & - & -0.2363 & -0.2169 & -0.1866 & -0.2189 & -0.2607 \\ -0.1924 & -0.1806 & - & -0.2257 & -0.1179 & -0.0966 & -0.1823 \\ -0.2105 & -0.2034 & -0.1794 & - & -0.1949 & -0.1832 & -0.2814 \\ -0.2203 & -0.1662 & -0.1669 & -0.1895 & - & -0.1793 & -0.1953 \\ -0.2000 & -0.1484 & -0.1539 & -0.1570 & -0.0876 & - & -0.1591 \\ -0.1762 & -0.0972 & -0.1589 & -0.1914 & -0.1214 & -0.1139 & - \end{pmatrix} $	$D^3 =$	(-0.3291) -0.2314 -0.1979 -0.2425 -0.2255 -0.1836	$\begin{array}{r} -0.1174 \\ -0.0780 \\ -0.2553 \\ -0.2714 \\ -0.1777 \\ -0.1836 \end{array}$	$\begin{array}{r} -0.1475 \\ -0.2416 \\ - \\ -0.2857 \\ -0.2851 \\ -0.2300 \\ -0.2005 \end{array}$	$\begin{array}{r} -0.2228 \\ -0.1875 \\ -0.1416 \\ - \\ -0.3056 \\ -0.1620 \\ -0.1743 \end{array}$	$\begin{array}{r} -0.06158\\ -0.2513\\ -0.1506\\ -0.1075\\ -\\ -0.1075\\ -\\ 0.1071\end{array}$	$\begin{array}{r} -0.1918 \\ -0.2255 \\ -0.1905 \\ -0.3162 \\ -0.2456 \\ - \\ -0.1094 \end{array}$	$\begin{array}{c} -0.1567 \\ -0.3403 \\ -0.1855 \\ -0.2131 \\ -0.2689 \\ -0.2113 \\ -\end{array}$
$D^2 =$	$ \begin{pmatrix} - & -0.1572 & -0.1553 & -0.2035 & -0.0298 & -0.1567 & -0.1713 \\ -0.3054 & - & -0.2034 & -0.2985 & -0.2120 & -0.3098 & -0.3407 \\ -0.2348 & -0.1991 & - & -0.1825 & -0.2397 & -0.3225 & -0.2338 \\ -0.2648 & -0.3035 & -0.2591 & - & -0.2763 & -0.3061 & -0.2371 \\ -0.3146 & -0.1970 & -0.3190 & -0.1922 & - & -0.2523 & -0.1846 \\ -0.1705 & -0.1095 & -0.2250 & -0.1849 & -0.1967 & - & -0.2134 \\ -0.2107 & -0.3127 & -0.2365 & -0.2039 & -0.1255 & -0.1981 & - \end{pmatrix} $	$D^4 =$	$\begin{pmatrix} -\\ -0.1349\\ -0.1206\\ -0.0770\\ -0.0511\\ -0.0671\\ -0.1946 \end{pmatrix}$	$\begin{array}{r} 0.0897 \\ - \\ - 0.0193 \\ - 0.2456 \\ - 0.1594 \\ - 0.2201 \\ - 0.0665 \end{array}$	$\begin{array}{r} -0.0707 \\ -0.0302 \\ -0.1263 \\ -0.1666 \\ -0.1444 \\ -0.1154 \end{array}$	$\begin{array}{r} -0.0923 \\ -0.0995 \\ -0.0456 \\ -\\ -0.0631 \\ 0.0183 \\ -0.1351 \end{array}$	$\begin{array}{c} 0.0078 \\ -0.1138 \\ 0.0249 \\ -0.1095 \\ - \\ -0.0958 \\ -0.1117 \end{array}$	-0.0006 -0.0257 -0.0461 -0.2414 -0.0197 - -0.0043	$\begin{array}{c} -0.0099 \\ -0.1489 \\ -0.1712 \\ -0.0706 \\ -0.1137 \\ -0.0525 \\ -\end{array} \right)$

5. Evaluation of alternatives: Dominance measuring methods

The DMM that we use derives a global dominance intensity index to rank alternatives on the basis that

$$D_{ks}^{l} \leq u^{l}(A_{k}) - u^{l}(A_{s}) \leq |D_{sk}^{l}|.$$

Then, we perform the following algorithm:

1. If $D_{ks}^{l} \geq 0$, then alternative A_{k} dominates A_{s} , and the dominance intensity of A_{k} over A_{s} is $DI_{ks}^{l} = d([D_{ks}^{l}, -D_{sk}^{l}], 0)$. Else $(D_{ks}^{l} < 0)$: - If $\overline{D}_{sk}^{l} \geq 0$, then A_{s} dominates A_{k} , and $DI_{ks}^{l} = -d([D_{ks}^{l}, -D_{sk}^{l}], 0)$. - Else $(D_{sk}^{l} < 0)$,

$$DI_{ks}^{l} = \left[\frac{-D_{sk}^{l}}{-D_{sk}^{l} - D_{ks}^{l}} - \frac{-D_{ks}^{l}}{-D_{sk}^{l} - D_{ks}^{l}}\right] \times d(\left[D_{ks}^{l}, -D_{sk}^{l}\right], 0).$$

2. Calculate a global dominance intensity (GDI^l) for each alternative A_k , i.e., $GDI_k^l = \sum_{s=1, s \neq k}^m DI_{ks}^l$, and rank the alternatives according to them.

The method incorporates the distance from the intervals $[D_{ks}^l, -D_{sk}^l]$ to 0 to account for their sizes and how far they are from 0.

5. Evaluation of alternatives: Dominance measuring methods

Table 8. Global dominance intensities and countermeasure rankings for DMs.

DM_1	DM_2	DM_3	DM_4	
$1^{st} A_9(0.1162)$	$A_1(0.2398)$	$A_1(0.1904)$	$A_1(0.2932)$	
$2^{nd} A_1(0.1094)$	$A_7(0.1506)$	$A_3(0.1453)$	$A_3(0.1427)$	
$3^{rd} A_3(0.0235)$	$A_9(0.0278)$	$A_9(0.1419)$	$A_2(0.0163)$	
$4^{th} A_7(0.0125)$	$A_3(-0.0051)$	$A_7(0.0305)$	$A_9(-0.0494)$	
$5^{th} A_4(-0.0419)$	$A_4(-0.1158)$	$A_4(-0.0492)$	$A_7(-0.0843)$	
$6^{th} A_5(-0.1006)$	$A_2(-0.1362)$	$A_2(-0.1811)$	$A_5(-0.1022)$	
$7^{th} A_2(-0.1193)$	$A_5(-0.1611)$	$A_5(-0.2778)$	$A_4(-0.2164)$	

- 1. Introduction
- 2. Problem structuring
- 3. Countermeasures and their impacts
- 4. Quantifying DM's preferences (component utilities, weights and vetoes)
- 5. Evaluation of alternatives (dominance measuring methods)
- 6. Aggregating the rankings

6. Aggregating the rankings to derive a group ranking

6. Aggregating the rankings to derive a group ranking

Table 8. Global dominance intensities and countermeasure rankings for DMs.

	DM_1	DM_2	DM_3	DM_4	Group	
1^{st}	$A_9(0.1162)$	$A_1(0.2398)$	$A_1(0.1904)$	$A_1(0.2932)$	A_1	
2^{nd}	$A_1(0.1094)$	$A_7(0.1506)$	$A_3(0.1453)$	$A_3(0.1427)$	A_9	
3^{rd}	$A_3(0.0235)$	$A_9(0.0278)$	$A_9(0.1419)$	$A_2(0.0163)$	A_3	
4^{th}	$A_7(0.0125)$	$A_3(-0.0051)$	$A_7(0.0305)$	$A_9(-0.0494)$	A_7	
5^{th} .	$A_4(-0.0419)$	$A_4(-0.1158)$	$A_4(-0.0492)$	$A_7(-0.0843)$	A_4	
6^{th} .	$A_5(-0.1006)$	$A_2(-0.1362)$	$A_2(-0.1811)$	$A_5(-0.1022)$	A_2	
7^{th} .	$A_2(-0.1193)$	$A_5(-0.1611)$	$A_5(-0.2778)$	$A_4(-0.2164)$	A_5	

- $-A_1, A_2$: Potassium addition
- A_3 : Lake liming
- $-A_4, A_5$: Wetland liming
- A_6 : Fertilization
- A₇: Removal of contaminated bottom sediments
- A₈: Treatment of contaminated fish and Bans on fish consumption
- A_9 : No action