

I IBERIAN CONFERENCE ON MCDM/A (IMCDM/A) Universidade de Coimbra, 2025





# **Computing the Pareto front in**

# **Multiobjective Linear Mixed Integer Fractional Programming**

João Paulo Costa and Maria João Alves, Univ Coimbra, CeBER, Faculty of Economics, Portugal

## **Objectives**

To present 2 Branch & Bound techniques to compute all the nondominated solutions in multiobjective linear mixed integer fractional programming (MOMILFP). To compare the techniques through computational experiments.

### Notation

$$\max \ z_k(x) = \frac{\sum_{j=1}^n c_{kj} x_j + \alpha_k}{\sum_{j=1}^n d_{kj} x_j + \beta_k}, \ k = 1, \dots, p$$

s. t.:  $x \in X$ =  $\begin{cases} x \in R^n | Ax \le b, A \in R^{m.n}b \in R^m, x \ge 0, \\ x_j \in Z_0^+, j \in J, x_j \in \{0,1\}, j \in I \end{cases}$ 

 $J,I\subseteq\{1,\ldots,n\},J\cap I=\emptyset,J\cup I\neq\emptyset$ 

 $c,d\in R^{p.n};\alpha,\beta\in R^p;d_kx+\beta_k>0;x\in X,k=1,\ldots p$ 

## **Computational Tests**

Preliminary tests.

CPLEX<sup>™</sup> Optimizer V12.4 for solving the auxiliary linear programming problems.

The techniques were coded in Delphi™ XE25 for Win64.

#### **Branch & Bound Techniques**

Initialization.

Characterize the nondominated region of the MOMILFP problem by computing its pay-off table.

Branch & Bound process.

i) Select the next nondominated region.

ii) Divide this region into two sub-regions, by imposing constraints on one of the objective functions. 2 approaches:

**First technique**: Divide by the middle of the objective function biggest range in the pay-off table.

**Second technique:** Cut a little bit (the predefined error) at the bottom of the region, considering the objective function biggest range in the pay-off table.

iii) Compute the pay-off tables of the two new sub-regions in order to characterize them.

The process is repeated for every sub-region until the remaining sub-regions are 'smaller' than a predefined error. One sub-region is 'smaller' than a predefined error when the range of values of each objective function in the pay-off table is lower than the predefined error.

### An example

$$max \quad z_{1}(x) = \frac{x_{1}+3x_{2}+2}{2x_{1}+x_{2}+1} \\ max \quad z_{2}(x) = \frac{3x_{1}+x_{2}+2}{x_{1}+2x_{2}+1} \\ \overset{3}{x_{1}} + 2x_{2} \leq 4 \\ \overset{3}{x_{1}} - x_{2} \geq 5(x) \\ \overset{3}{x_{1}} -$$



#### 2 objective functions; 5 constraints; 20 binary variables.



#### 2 objective functions; 5 constraints; 20 integer variables.



2 objective functions; 5 constraints; 10 integer and 10 continuous variables.

The techniques provide not only supported but also unsupported nondominated solutions.

It can be observed that the nondominated solution set of a MOLMIFP problem has, in general, a significant part of unsupported solutions.



#### Conclusions

Computational experiments show that the algorithms can deal with practical MOMILFP problems with binary, general integer and mixed-integer variables. The second technique seems to be better.

More tests are needed.

The algorithm and the software implementation must be improved to avoid unnecessary computations.