
The techniques provide not only supported but also unsupported nondominated solutions, that is, those that are dominated by unfeasible convex combinations of other nondominated solutions. Note that nondominated 

solutions associated with a weight vector are always supported. It can be observed that the nondominated solution set of a MOLMIFP problem has, in general, a significant part of unsupported solutions.

Computing the Pareto front in 
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To present 2 Branch & Bound techniques to compute all the nondominated solutions in multiobjective linear mixed integer fractional programming (MOMILFP).  

To compare the techniques through computational experiments.
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σ𝑗=1
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s. t.: 𝑥 ∈ 𝑋

=
𝑥 ∈ 𝑅𝑛|𝐴𝑥 ≤ 𝑏, 𝐴 ∈ 𝑅𝑚.𝑛𝑏 ∈ 𝑅𝑚, 𝑥 ≥ 0,

𝑥𝑗 ∈ 𝑍0
+, 𝑗 ∈ 𝐽, 𝑥𝑗 ∈ 0,1 , 𝑗 ∈ 𝐼

𝐽, 𝐼 ⊆ 1,… , 𝑛 , 𝐽 ∩ 𝐼 = ∅, 𝐽 ∪ 𝐼 ≠ ∅

𝑐, 𝑑 ∈ 𝑅𝑝.𝑛; 𝛼, 𝛽 ∈ 𝑅𝑝; 𝑑𝑘𝑥 + 𝛽𝑘 > 0; 𝑥 ∈ 𝑋, 𝑘 = 1,…𝑝

Initialization. 

Characterize the nondominated region of the MOMILFP 
problem by computing its pay-off table. 

Branch & Bound process. 
i) Select the next nondominated region.

ii) Divide this region into two sub-regions, by imposing 
constraints on one of the objective functions. 2 
approaches:

First technique: Divide by the middle of the  objective function 
biggest range in the pay-off table.

Second technique: Cut a little bit (the predefined error) at the 
bottom of the region, considering the objective function biggest 
range in the pay-off table.

iii) Compute the pay-off tables of the two new sub-regions 
in order to characterize them. 

The process is repeated for every sub-region until the 
remaining sub-regions are ‘smaller’ than a predefined error. 
One sub-region is ‘smaller’ than a predefined error when the 
range of values of each objective function in the pay-off table 
is lower than the predefined error.

Preliminary tests.  

CPLEX  Optimizer V12.4 for solving the auxiliary linear programming problems.

The techniques were coded in Delphi  XE25 for Win64.

𝑚𝑎𝑥 𝑧1 𝑥 =
𝑥1+3𝑥2+2

2𝑥1+𝑥2+1
 

𝑚𝑎𝑥 𝑧2 𝑥 =
3𝑥1+𝑥2+2

𝑥1+2𝑥2+1
 

 

     s. t.:  

𝑥1 ,𝑥2 ∈ ℤ0
+,

3𝑥1 + 2𝑥2 ≤ 24
−𝑥1 + 𝑥2 ≤ 4
𝑥1 − 𝑥2 ≤ 4

 (𝑥1 ,𝑥2) ∈ 𝑋 

Table 1. All efficient solutions of the example. 

𝑥1 𝑥2 𝑧1 𝑧2 𝑠 𝑥  
0 0 2.000 2.000 2.000 

0 1 2.500 1.000 1.750 

0 2 2.667 0.800 1.733 

0 3 2.750 0.714 1.590 

0 4 2.800 0.667 1.733 

1 0 1.000 2.500 1.750 

2 0 0.800 2.667 1.733 

3 0 0.714 2.750 1.590 

4 0 0.667 2.800 1.733 
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An example
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Computational experiments show that the algorithms can deal with practical 
MOMILFP problems with binary, general integer and mixed-integer variables. 
The second technique seems to be better.
More tests are needed.
The algorithm and the software implementation must be improved to avoid 
unnecessary computations.

The techniques provide not only supported but also 
unsupported nondominated solutions.

It can be observed that the nondominated solution set of a 
MOLMIFP problem has, in general, a significant part of 
unsupported solutions.
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2 objective functions;  5 constraints; 10 integer and 10 continuous variables.

2 objective functions;  5 constraints; 20 integer variables.

2 objective functions;  5 constraints; 20 binary variables.

Using the example
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