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Jhjectives

To present 2 Branch & Bound techniques to compute all the nondominated solutions in multiobjective linear mixed integer fractional programming (MOMILFP).

To compare the techniques through computational experiments.
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Initialization.

Characterize the nondominated region of the MOMILFP
problem by computing its pay-off table.

Branch & Bound process.
1) Select the next nondominated region.

i1) Divide this region into two sub-regions, by imposing
constraints on one of the objective functions. 2
approaches:

First technique: Divide by the middle of the objective function
biggest range in the pay-off table.

Second technique: Cut a little bit (the predefined error) at the
bottom of the region, considering the objective function biggest
range in the pay-off table.

i) Compute the pay-off tables of the two new sub-regions
in order to characterize them.

The process is repeated for every sub-region until the
remaining sub-regions are ‘smaller’ than a predefined error.
One sub-region is ‘smaller’ than a predefined error when the
range of values of each objective function in the pay-off table
is lower than the predefined error.

An example
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’ g Table 1. All efficient solutions of the example.
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The techniques provide not only supported but also
unsupported nondominated solutions.

It can be observed that the nondominated solution set of a
MOLMIFP problem has, in general, a significant part of

\unsupported solutions.

omputational 1ests

Preliminary tests.
CPLEX™ Optimizer V12.4 for solving the auxiliary linear programming problems.

The techniques were coded in Delphi™ XE25 for Win64.
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Computational experiments show that the algorithms can deal with practical
MOMILFP problems with binary, general integer and mixed-integer variables.
The second technique seems to be better.

More tests are needed.

The algorithm and the software implementation must be improved to avoid
unnecessary computations.
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