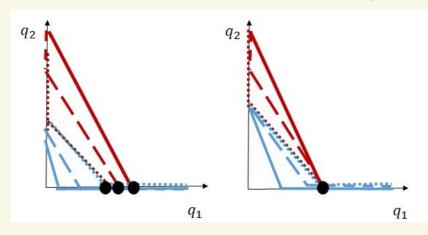
Multicriteria Analysis of Other-Regarding Behavior in Oligopolies with Penalties

Caraballo Pou, Mª Ángeles; Zapata Reina, Asunción; Monroy Berjillos, Luisa; Mármol Conde, Amparo Mª

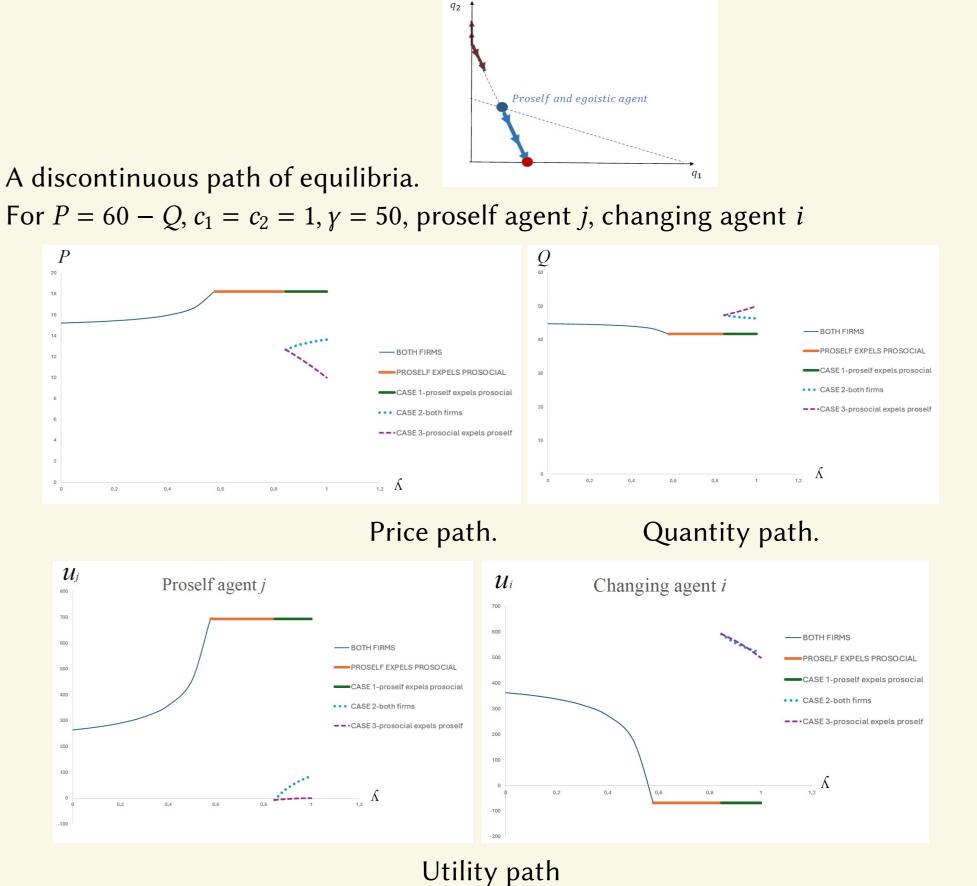
Introduction

- Penalty: Sanction for deviation from a fixed total quantity (target).
- Several real-life situations: wine sector, fishing sector.


Cournot game with penalties: $\{(E_j, u_j)_{j \in N}\}$

- The firms produce a homogeneous good.
- \blacktriangleright P(Q): inverse demand function.
- Profit function: $\pi_j(q_1, ..., q_n) = q_j P(Q)$.
- F_j(Q): penalty function for firm *j* when aggregated production deviates from a target γ ($\gamma > 0$).
- F_j twice-continuously differentiable, non-negative, convex. $F_j(\gamma) = 0$ and $F'_i(Q) = 0$ if and only if $Q = \gamma$.
- Utility function: $u_j(q_1, ..., q_n) = q_j P(Q) F_j(Q)$.

Path of equilibria when λ differs


 \hat{y} is the target value such that:

When $\gamma < \hat{\gamma}$ proself firms drive prosocial firms out of the market. When firms have the same penalty: $\hat{\gamma} = \frac{a}{2h}$.

Path of equilibria for different firms ($\gamma < \hat{\gamma}$), when λ^i varies.

When $\gamma > \hat{\gamma}$, a discontinous path of equilibria arises where proself firm expels prosocial firm, prosocial firm expels proself firm and both firms remain.

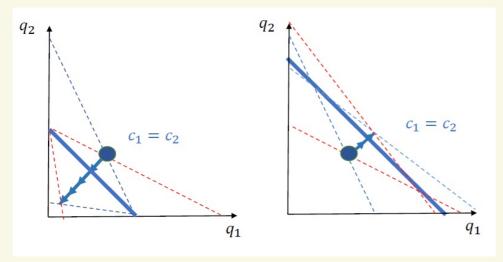
Multicriteria game with penalties: $\{(E_j, u)_{j \in N}\}$

- Vector-valued utility function: $u = (u_1, ..., u_n)$.
- ► Preference function: $v^i(q) = \sum_{j \in N} \lambda^i_j u_j(q), \ \lambda^i \in \Delta^n$.
- Types of firms with other-regarding (OR) behavior:
 a) equanimous if $\lambda_j^i = \lambda_k^i \forall j$, $k \in N$.
 b) impartial if $\lambda_j^i = \lambda_k^i \forall j$, $k \neq i$.
 c) pro-self if $\lambda_i^i \ge \lambda_j^i \forall j \in N$.
 d) pro-social if $\lambda_i^i \le \lambda_j^i \forall j \in N$.

A particular case

- Linear inverse demand function: P(Q) = a bQ.
- Quadratic penalty function: $F_j(Q) = c_j(Q \gamma)^2$.
- ▶ a, b > 0 for all $j \in N$, $c_j > 0$: penalty parameter.
- Higher c_j : stronger incentive for firms to align with γ .
- Utility function: $u_j(q_1, ..., q_n) = q_j(a bQ) c_j(Q \gamma)^2$.
- $\blacktriangleright \text{ Best response: } R^{j}(q_{-j}) = max \left\{ 0, \frac{a+2c_{j}\gamma-(b+2c_{j})\sum_{h\neq j}q_{h}}{2b+2c_{j}} \right\}.$
- Nash equilibrium: $q_j = \frac{a+2c_j\gamma+2(\frac{a}{b}-\gamma)(C-nc_j)}{(n+1)b+2C}$, with $C = \sum_{h \in N} c_h$.
- OR-Best response, with $\bar{c}_i = \sum_{h \in N} \lambda_h^i c_h$:

$$R_{\lambda}^{i}(q_{-i}) = max\{0, \frac{\lambda_{i}^{i}a + 2\gamma\lambda_{i}^{i}c_{i} - \sum_{j\neq i}(b(\lambda_{i}^{i} + \lambda_{j}^{i}) + 2\bar{c}_{i}))q_{j}}{2b\lambda_{i}^{i} + 2\bar{c}_{i}}\}$$


Path of equilibria. Firms with the same λ

Conclusions

Equilibria depend on γ and λ .

- Equilibrium exists when all firms have the same λ .
- Mutiple equilibria: all firms are equanimous.
- When λ differs, equilibria depend both on γ and λ .
 - There are economic sectors where considering other-regarding behavior and quantity goals jointly is relevant.
 - We propose a theoretical framework adaptable to various situations, in which other-regarding behaviour is beneficial for firms. Under some conditions:

- Equilibrium exists and is unique except for equanimous firms.
- First the target value such that when $\gamma < \overline{\gamma} (\gamma > \overline{\gamma})$ the total quantity in equilibrium decreases (increases) as λ decreases.
- When firms have the same penalty: $\bar{\gamma} = \frac{a}{b} + \frac{a}{4c}$.

Path of equilibria for identical firms when λ^i varies. Cases $\gamma < \overline{\gamma}$ and $\gamma > \overline{\gamma}$.

- The most other-regarding firm achieves higher profits than the least other-regarding one and the consumer surplus is also higher.
- The higher λ_i , the higher the level of quantity produced.

References

Monroy L, Caraballo MA, Mármol AM, Zapata A (2017) Agents with other-regarding preferences in the commons. Metroeconomica 68, 947–965. Mármol AM, Monroy L, Caraballo MA, Zapata A (2017) Equilibria with vector-valued utilities and preference information. The analysis of a mixed duopoly. Theory and Decision 83, 365–383.

Acknowledgement: Grant PID 2021-124981NB-I00 funded by MICIU/AEI/ 10.13039/501100011033 and by "ERDF/EU", and Grant RED2022-134540-T funded by MICIU/AEI/10.13039/501100011033.

I IBERIAN CONFERENCE ON MCDM/A

May 8-9, 2025

Universidade de Coimbra

