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1. ABSTRACT

This paper considers networks in which nodes have communication needs between them, that is, any pair of
agents, located at the nodes of the network, requests a connection with a certain capacity. The cost of building,
maintaining or using an edge with a given capacity is the same across any pair of agents. It is known that feasi-
bility is reached by any Maximal-Capacity Spanning Tree (MCST). The capacity that any pair of agents requires is
considered their benefit if and only if, in the resulting tree, there exists a path between them such that every edge
provides at least this required capacity. Hence, a benefit capacity synthesis cooperative game is defined, in which
the worth of each coalition S is the sum of the capacities of the edges in a MCST on S. On the other hand, the
agents have to pay for the link of a MCST. Therefore a cost capacity synthesis cooperative game is defined, in
which the worth of each coalition S is the cost of the links which ensures the capacities required for the agents in
S with respect to all the agents in the network. These two games have been already studied in previous works. In
this paper we extend the idea of stability to a bi-dimensional framework and analyze stable allocations with respect
to both games . We also relate them with some wellknown solution concepts in the literature.

2. Capacity synthesis problem

In the capacity synthesis problem, a set of agents share a network for exchanging information, for transporting
commodities along roads or shipping channels, for establishing commercial channels with limited capacity of hu-
man or material resources, etc. For capacity synthesis problems, a required capacity between any pair of agents
(bandwidth, road-width, depth of the channel, etc.) is needed. A feasible graph for the capacity synthesis problem
is one in which any pair of agents is connected by a path whose edges all hold the capacity of at least the required
capacity between them. Among these feasible graphs, we are interested on those with minimum cost. It is well
known that a feasible network with minimum total cost is obtained by using a maximal spanning tree with respect
to the capacities.

Example

Consider N = {1, 2, 3, 4}, and t =

 0 5 5 3

5 0 1 5

5 1 0 6

3 5 6 0



3. How to share V (N, t)

A solution, f , for the cost sharing problem, (N, t), assigns to each problem, (N, t), a subset of I∗(N, t), f (N, t).
For instance, the celebrated Bird solution for the minimum cost spanning tree problem can be adapted to this
framework to provide a single-valued solution concept as follows: Select a maximal spanning tree and an arbitrary
agent to be the non-paying “source”, then charge to every other agent the cost of its adjacent upstream edge.The
Bird rule, denoted by B is the uniform average of the (Γ, i)-Bird solutions over all maximal spanning trees and all
agents.
Example (continued)

Agent 1 Agent 2 Agent 3 Agent 4
Γ = {(3, 4), (1, 3), (1, 2)}

B(Γ,1)(N, t) 0 5 5 6

B(Γ,2)(N, t) 5 0 5 6

B(Γ,3)(N, t) 5 5 0 6

B(Γ,4)(N, t) 5 5 6 0

Agent 1 Agent 2 Agent 3 Agent 4
Γ′ = {(1, 2), (2, 4), (3, 4)}

B(Γ′,1)(N, t) 0 5 6 5

B(Γ′,2)(N, t) 5 0 6 5

B(Γ′,3)(N, t) 5 5 0 6

B(Γ′,4)(N, t) 5 5 6 0

Agent 1 Agent 2 Agent 3 Agent 4
Γ′′ = {(1, 3), (3, 4), (2, 4)}

B(Γ′′,1)(N, t) 0 5 5 6

B(Γ′′,2)(N, t) 5 0 6 5

B(Γ′′,3)(N, t) 5 5 0 6

B(Γ′′,4)(N, t) 5 5 6 0

Agent 1 Agent 2 Agent 3 Agent 4
B(N, t) 15/4 15/4 17/4 17/4

Figure 3: The Bird rule. �

Cooperative game theory provides tools to deal with cost sharing problem associated to the capacity synthesis
problem. We consider two different cooperative games, a cost game denoted by (N, c), and another different
game, that we call benefit game, denoted by (N, v).

In the cost game, c(S) = V (N, tS) for every S ⊆ N , where tSij = 0 if (i, j) ∈ (N \ S)(2), and tSij = tij otherwise.

On the other hand, in the benefit game, v(S) = V (S, t) for every S ⊆ N , where (S, t) is the projection of (N, t) on S.

Notice that c(N) = v(N) = V (N, t), and v(S) ≤ c(S) for all S ⊆ N .

The requirements x(S) ≤ c(S) for all S ⊆ N are seen as the usual core stability property. We denote the core of
the game (N, c) by C(N, c). On the other hand, v(S) ≤ x(S) for all S ⊆ N , apart from being the stability condi-
tions in the benefit game, can be also seen as a normative requirement of fairness if we think in terms of costs.
Analogously C(N, v) denote the set of stable allocations for (N, v).

Proposición 3.1 Allocations provided by the Bird rule belong to C(N, c) ∩ C(N, v).

Example (continued)

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

c(S) 13 11 12 14 15 16 16 16 16 16 16 16 16 16 16

B(S) 15/4 15/4 17/4 17/4 15/2 8 8 8 8 17/2 47/4 47/4 49/4 49/4 16

v(S) 0 0 0 0 5 5 3 1 5 6 10 10 11 11 16

Define, for each S ⊂ N , ev(x, S) = v(S) − x(S), ec(x, S) = x(S) − c(S) and the vector-valued excess function
e(x, S) = (ev(x, S), ec(x, S))t.

Definición 3.1 The set of preference core allocations for the capacity synthesis problem (N, t) is PC(N, t) = {x ∈
IRn : e(x, S) ≦ 0, ∀S ⊆ N}.1

Example (continued)
PC(N, c) is the convex hull of P1 = (5, 0, 5, 6)t, P2 = (5, 0, 6, 5)t, P3 = (0, 5, 5, 6)t, P4 = (0, 5, 6, 5)t, P5 = (5, 5, 6, 0)t and
P6 = (5, 5, 0, 6)t, and B(N, t) = 1/4(P1 + P4 + P5 + P6).

Definición 3.2 The set of preference p-core allocations for the capacity synthesis problem (N, t) is PpC(N, t) =
{x ∈ IRn : e(x, S) ≦ p, ∀S ⊆ N}.

For each x ∈ I∗(N, t), denote p̄v(x) = maxS⊂Ne
v(x, S), p̄c(x) = maxS⊂Ne

c(x, S) and p̄(x) = (p̄v(x), p̄c(x))t.

Definición 3.3 The generalized least core for the capacity synthesis problem (N, t) is

GLC(N, t) = {x ∈ IRn : ∄ y ∈ I∗(N, t) such that p̄(y) ≦ p̄(x), p̄(y) ̸= p̄(x)}.

Notice that, if x ∈ GLC(N, t), then (x, p̄(x)) is a non-dominated solution of the following bi-criteria linear program-
ming problem:

min (pv, pc)
s.t. : v(S)− x(S) ≤ pv ∀S ⊂ N

x(S)− c(S) ≤ pc ∀S ⊂ N
x(N) = V (N, t)
x ≧ 0,

(3.1)

and conversely, if (x∗, p∗) is a non-dominated solution of the above multi-criteria linear programming problem, then
x∗ ∈ GLC(N, t) and p̄(x∗) = p∗.

For each x ∈ I∗(N, t), consider the 2 × (2n − 2)-matrix, E(x), whose two rows are (ev(x, S))S⊂N and (ec(x, S))S⊂N ,
arranged in order of decreasing magnitude. Denote by Ek(x), k = 1, 2, . . . 2n − 2, the column vectors of E(x). We
say that y ≻ x, if E(y) ≤lex E(x), that is, Ek(y) ≤ Ek(x) for the first column, k, in which E(y) and E(x) are different.2

Definición 3.4 The generalized nucleolus for the capacity synthesis problem (N, t) is: GN(N, t) = {x ∈ IRn : ∄ y ∈
I∗(N, t) such that y ≻ x}.

The generalized nucleolus can be obtained by solving multi-criteria linear programming programs in a recursive
procedure.3

Example (continued)
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10 = (0, 0)t ∈ IR2 and e(x, S) ≦ 0 means ev(x, S) ≤ 0 and ec(x, S) ≤ 0
2Ek(y) ≤ Ek(x) means Ek(y) ≦ Ek(x) and Ek(y) ̸= Ek(x).
3See Hinojosa M.A., Mármol A.M. and Thomas L.C. (2005), “Core, least core and nucleolus for multiple scenario cooperative games”, European Journal of Operational Research, 164, 225-238


