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Motivation

▶ Multiobjective optimization problems (MOPs) are formulated to optimize simultaneously several
conflicting objectives arising in many real-world situations.

▶ Many metaheuristic multiobjective optimization algorithms have emerged for solving MOPs, such as
evolutionary algorithms [1], [2], particle swarm optimization [3], etc.

▶ These algorithms uses population-based techniques designed to approximate the Pareto front (PF),
which is formed by all the Pareto optimal solutions, with a set of non-dominated solutions.

▶ A key concern in the field is how to evaluate the performance of these population-based algorithms.
1. Convergence (closeness to the Pareto front).
2. Spread (coverage over the Pareto front)
3. Uniformity (distribution in the Pareto front

▶ Not all QIs can capture the three performance criteria (convergence, spread and uniformity).
▶ Population-based algorithms are ranked differently depending on the QIs used.

Objective

Building three composite QIs to globally assess the quality of the approximation sets generated by
population-based multiobjective optimization algorithms.

Conceps

The composite QIs (CQIs) are build based on the double reference point (DRP) preferential scheme
proposed in [4]. To normalize the value of the individual indicators :
▶ A value that is regarded as desirable (aspiration level).
▶ A value that is regarded as the limit of the acceptable (reservation level).

Different compensation degrees among the single QIs considered can be applied, which determines how
bad single QI values are compensated by good ones:
▶ Weak DRP-based CQI (W-CQI) → Fully compensatory index
▶ Strong DRP-based CQI (S-CQI) → Non-compensatory index
▶ Mixed DRP-based CQI (M-CQI) → Partially compensatory index

The original single indicator Iij is normalized as follows:
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▶ Îij is in [0,1). Original QI value is worse than the reservation level.
▶ Îij is in [1,2]. Original QI value is better than the reservation level but worse than the aspiration level.
▶ Îij is in (2,3]. Original QI value is better than the aspiration level.

Notation

Proposal

▶ Weak DRP-based CQI:
W-CQIi =

∑NI
j=1 µ

w
j Îij ,

The contribution of each individual indicator is relative to the total weight assigned across all indicators.
▶ Strong DRP-based CQI:
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,

Value of the worst normalized quality indicator
▶ Mixed DRP-based CQI:

M-CQIi = λ · W-CQIi + (1 − λ) · S-CQIi ,

Partially compensatory composite quality indicator.
▶ Note: The DRP-based CQIs take values in the same scale as the normalized QIs, i.e. in the 0-3 range.

Experiments

▶ Algorithms: 18 population-based optimization algorithms: AGEMOEAII, CLIA, DGEA, EFRRR,
EMyOC, GrEA, GWASFGA, HEA, LERD, LMEA, LMOCSO, MaOEADDFC, MOEADDE, NSGA-III,
PPS, RVEA, SSCEA, and VaEA.

▶ Problems: Three-, five-, and eight-objective functions problems: DTLZ1, IDTLZ2, and WFG1
benchmark problems.

▶ Indicators: ER, PD, GD, Spacing

▶ Reference values:
▶ Ir

j is set to percentile 25, for j = 1, â,10.
▶ Ia

j is set to percentile 75, for j = 1, â,10.
All solutions are used to compute Ir

j , Ia
j , Imin

j , and Imax
j

▶ 20 independent runs for each algorithm.

Results
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Figura: Three-objective DTLZ1 problem

Position DTLZ1 IDTLZ2 WFG1
M-CQI HV M-CQI HV M-CQI HV

1 EMyOC EFRRR AGEMOEAII AGEMOEAII AGEMOEAII AGEMOEAII
2 AGEMOEAII CLIA CLIA SSCEA EFRRR EFRRR
3 LMEA RVEA SSCEA LMEA NSGAIII MaOEADDFC
4 SSCEA NSGAIII LMEA EMyOC MaOEADDFC NSGAIII
5 EFRRR HEA EMyOC CLIA CLIA HEA
6 MaOEADDFC AGEMOEAII VaEA MaOEADDFC HEA CLIA
7 RVEA SSCEA LMOCSO VaEA VaEA GWASFGA
8 CLIA LMEA RVEA HEA RVEA VaEA
9 NSGAIII EMyOC MaOEADDFC GWASFGA SSCEA SSCEA
10 MOEADDE LMOCSO GWASFGA EFRRR GrEA RVEA
11 VaEA LERD NSGAIII NSGAIII GWASFGA GrEA
12 HEA MaOEADDFC EFRRR MOEADDE LMEA LERD
13 GrEA VaEA GrEA LMOCSO LERD LMOCSO
14 GWASFGA PPS HEA RVEA EMyOC LMEA
15 PPS MOEADDE PPS PPS PPS EMyOC
16 LERD GWASFGA MOEADDE GrEA MOEADDE PPS
17 LMOCSO GrEA DGEA DGEA LMOCSO MOEADDE
18 DGEA DGEA LERD LERD DGEA DGEA

Cuadro: Algorithm ranking according to the M-CQI and to the HV for three-objective
problems

Theoretical results

Definition: A QI is Pareto-compliant if it satisfies that, when a non-dominated solution set strictly dominates
another one, the QI value of the one dominating is strictly better than that of the dominated one.
Definition: A QI is weakly Pareto-compliant if a non-dominated solution set strictly dominates another one,
the QI value of the one dominating is better or equal than that of the dominated one.
Theorem: If, at least, one Pareto-compliant single QI is combined with other weakly Pareto-compliant
single QIs, the Pareto-compliance of the W-CQI and M-CQI is assured, while the S-CQI is weakly
Pareto-compliant.

Conclusions

Advantages
▶ It can be tuned to aggregate the desired single Qis.
▶ It can combine information about convergence, spread and/or uniformity as wished.
▶ It are obtained using reservation and aspiration levels to be attained by the single QIs.
▶ Any population-based algorithm can be assessed with the DRP-based CQIs, an even new

indicator-based algorithms can be defined according to them.
Disadvantages
▶ They can be time-consuming to obtain due to the computational cost of calculating the single QI

values, which may increase as the number of objectives increases.
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