

Multi-Objective Optimization for Sustainable Supply Chain Design and Planning

Ana Barbosa-Póvoa

Centre for Management Studies (CEG-IST), Department of Engineering and Management Instituto Superior Técnico (IST), University of Lisbon, Portugal

IMCDM2025, Coimbra

- Supply Chain Evolution from Traditional to Sustainable Supply Chain
- Design and Planning Sustainable Supply Chains ToBLoOM
- New Multi-objective Approach extending ToBLoOM
- Case Studies Analyzing different strategic options
- Challenges & Future Work

Traditional a Supply Chain is...

TÉCNICO LISBOA

A combination of processes aimed at fulfilling customers' requests, that include a set of network entities such as suppliers, manufacturers, transporters, warehouses, retailers and customers, whose main purpose is customer's satisfaction at a minimum cost

Closed-Loop Supply Chain

+ Reverse logistics activities including the collection and treatment of non-conformed and end-of-life products through recycling, or remanufacturing, or repairing

Some in place Sustainable Strategies and Practices

Product and Processes measures

Recycle and reuse

Diminish Waste

Some in place Sustainable Strategies and Practices

Processes measures

Reduce transportation footprint.

Use of cleaner transportation modes

Eco driving.

Reduce warehousing footprint. Use of cleaner light/operation modes

But more is required ...

- Integrated Product and Process oriented measures
- **Resources availability**
- Human resources conditions

Sustainable Supply Chain - complex network system that involve a diverse set of entities that manage products from suppliers to customers and associated returns, accounting for social, environmental and economic impacts (Barbosa-Póvoa et al, 2018)

CAna Barbosa-Póvoa

Sustainability Should be part of Supply Chains' Strategy

Barbosa-Póvoa, A.P, Carvalho A. Silva, C. "Sustainable supply chains: An integrated modeling approach under uncertainty", Opportunities and Challer Sustainable Supply Chain: An Operations Research Perspective, European Journal of Operational <u>268, 2</u>, 399-431

Supply Chains

IMCDM2025, Coimbra

How to simultaneously incorporate economic, environmental and social concerns in the design and planning of supply chains?

How to adequately introduce environmental impact indicators in supply chain design and planning?

How to define social indicators that can be incorporated into an Optimisationbased tool?

CAna Barbosa-Póvoa

Design and Planning Sustainable Supply Chains

Mota, B, Gomes, M.I, Carvalho, A, Barbosa-Póvoa, A.P, "Sustainable supply chains: An integrated modeling approach under uncertainty", **Omega**, Volume 77, Pages 32-57, June 2018, <u>https://doi.org/10.1016/j.omega.2017.05.006</u>

A pool of n-solutions

Economic Objective

Max Net Present Value: actualized cash flow: net earnings – fixed capital investment

Net earnings given by the difference between the incomes, defined by the amount of products sold, and the costs per time period:

- raw material costs
- production and remanufacturing costs
- recovered product costs
- transportation costs
- handling and contracted costs at the hub terminals
- inventory costs
- labour costs

14

Fixed capital investment given by:

- the investment in facilities
- investment in production and remanufacturing technologies
- investment in transportation links

$$max NPV = \sum_{t \in T} \frac{CF_t}{(1+ir)^t} - \sum_{\gamma} FCI_{\gamma}$$

$$CF_{t} = \begin{cases} NE_{t} & t = 1, \dots, NT - 1\\ NE_{t} + \sum_{\gamma} \left(sv_{\gamma}FCI_{\gamma} \right) & t = NT \end{cases}$$

Environmental Objective

Environmental objective function: activities impact for each midpoint category

CAna Barbosa-Póvoa

Social Objective

Idea:

- To promote job creation in less developed regions
- To stimulate regional development
- To support access to critical products

Social Objective

Social objective function: create jobs in less developed regions

Main Constraints

- Material balances at each of the supply chain entities
- Entities & transportation capacities
- Flows & Supply & Demand Restrictions
- Inventory storage capacity and inventory policies
- Transportation modes (for insourced and outsourced transportation)
- Production and Remanufacturing technology

```
Material balance at the factories:
 S_{mi(t-1)} + \sum_{g:(m,g) \in H_{prod}} P_{mgit} + \sum_{g:(m,g) \in H_{rem}} R_{mgit} = S_{mit}
                 \sum \qquad BOM^f_{mn}X_{naijt}, \ t\in T \land m\in M_{fp} \land i\in I_f
                                                                                                                                 (1)
         n, j: (n, i, j) \in F_{OUTFFP}
          a:(a,n,i,j) \in NetP
                   X_{majit} = \sum_{(n,g) \in H_{prod}} BOM_{mng}^{prod} P_{ngit}, m \in M_{rm} \land i \in I_f \land t \in T
         j∈l<sub>sup</sub>
 a:(a,m,j,i) \in NetP
                                                                                                                                   (2)
                        X_{maijt} = \sum_{(n,g) \in H_{rem}} BOM_{mn}^{rem} R_{ngit}, \ m \in M_{rp} \land i \in I_f \land t \in T
         \Sigma
 j:(m, j, i) \in F_{INFRP}
 a:(a,m,j,i) \in NetP
                                                                                                                                   (3)
       Material balance at the warehouses:
                       \sum BOM_{mn}X_{najit} = S_{mit}
 S_{mi(t-1)} +
                     n, j: (n, j, i) \in F_{INW}
                     a:(a,n,j,i) \in NetP
                Σ
                                  BOM_{mn} X_{naijt}, t \in T \land m \in (M_{fp} \cup M_{rp}) \land i \in I_w
         n, j:(n, i, j) \in F_{OUTW}
         a:(a,n,i,j) \in NetP
 n, j: (n, j, i) = Freener
                          n, j:(n,i,j)=Former
 a:(a.n. i.i) = Net P
                             a: (a.n.i.f) < Net
                                                                           Flow capacity:
                                                               (6) \sum_{a,m,j:(a,m,i,j)\in N \in I} X_{maijt} \leq ec_i^{max}Y_i, i \in I \land t \in T
                                                                                                                                      (12)
m \in (M_{f_B} \cup M_{r_B}) \land i \in I_{part} \land t \in T
                                                                             \sum X_{maijt} \le ec_j^{max}Y_j , j \in I \land t \in T
   Demand and return at the markets:
                                                                                                                                      (13)
                                                                       a,m,i:(a,m,i,j)=NerP
            X_{majk} = dmd_{mit}, i \in I_c, t \in T
                                                                (7)
                                                                           Stock capacity:
 j:(m.j.i)=Fingsp
a:(a.m. i.f) «NetP
                                                                       S_{mit} \leq ic_{mi}^{max}Y_i, m \in M_{fp} \land i \in (I_f \cup I_w) \land t \in T
                                                                                                                                      (14)
    \sum X_{maijt} \ge RetF_m \sum BOM_{mn}^{recov}X_{naji(t-1)}.
                                                                       S_{mit} \ge ic_{mi}^{min}Y_i, m \in M_{fp} \land i \in (I_f \cup I_w) \land t \in T
                                                                                                                                      (15)
j:(m.i.j) «Farrer»
                       n, j:(n, j,i) (Facto
                                                                          Entity capacity:
a;(a,m,i,i) eNerP
                          a:(a.n. j.i)eNetP
                                                                (8) YCT_k = \sum apur_m X_{majk} + \sum apu_m S_{mk}
t > 1 \land m \in M_{m} \land i \in I_{c}
                                                                             maj:(m,a,j)=NetP
                                                                       i \in I_f \cup I_w \land t \in T
                                                                                                                                      (16)
    \sum X_{maijt} \leq \sum BOM_{mn}^{recov}X_{naji(t-1)},
j:(m,i,j) \in F_{DUTCRP} n,j:(n,j,i) \in F_{DCFP}
                                                                       YC_i \ge YCT_i, i \in I_f \cup I_w
                                                                                                                                      (17)
a:(a.m.i.i)=NetP
               a:(a,n,j,i) \in NetP
t > 1 \land m \in M_{rp} \land i \in I_c
                                                                (9)
                                                                      YC_i \leq ea_i^{max}Y_i, i \in I_f \cup I_w
                                                                                                                                       (18)
```

©Ana Barbosa-Póvoa

OpLog Research Group

. . .

Case Studies

		Case-Study I	Case-Study II	Case-Study III	
Industry		Electronic components	Pulp and paper	Automotive components	
tainability dicators	Economic	NPV	NPV	NPV	
	NG I	ReCiPe (LCA)	ReCiPe	-	
Sus ir	Environmental		PEF (LCA)		
0,	Social	GDP	_	GDP Unemployment Rate Job creation	
Look at:		The three pilars of Sustainability	Environmental Goal	Social Goal	

Case Study II

Considers the three sustainability pillars when redesigning supply chains?

Mota, B, Gomes, M.I, Carvalho, A, Barbosa-Póvoa, A.P, "Sustainable supply chains: An integrated modeling approach under uncertainty", **Omega**, Volume 77, Pages 32-57, June 2018, <u>https://doi.org/10.1016/j.omega.2017.05.006</u>

CAna Barbosa-Póvoa

Case Study I

Results C7 C7 A: max NPV F3 F2 F2 C3 Air4 Sea2 C2 **B:** min Env. =Sea2 Impact F1 M6 51 - F1 1 0 c1 C1 W9 C4 W1 C5 C5 C: max Social with 95% of В Α max NPV **D:** max Social with 85% of Air4 Air4 Air4 max NPV E: max Social

Changes in optimization objectives return significantly different strategic and tactical Supply Chains decisions

23

Indentification of sustainability hotspots

Importance of an **integrated framework** allows a **better performance** across the supply chain

Bulgária Hungary Portugal

0.67

0.75

0.36

0.47

Spain

0.95

Countries and corresponding GDP factor

Italy

0.98

United

Kingdom

1.06

1.08

Environmental Impact

Indi	cator	Units	Α	В	С	D	E
Econ	omic	€	1,280,985,986	866,479,118	1,216,936,687	1,088,838,088	0
Envir	ronmental	-	996,589,688	905,849,526	996,522,581	995,990,099	988,465,182
Socia	al	-	534	1,148	1,608	2,537	8,671

Case Study I 🖷

• • • • A

D E

Environmental

C

1.19

B

Economic

OpLog Research Group

1.24

Case-study II

How life cycle scope definition influences supply chains decisions ?

Case Study II – Goal and definition

CAna Barbosa-Póvoa

Case Study II – Lyfe Cycle Scope

- scenario 3: only transportation activities

Narrower system boundaries can result in economically and environmentally worse solutions

- scenario 4: only production and pulp production at the suppliers
- scenario 5: the impact of production, pulp production at the suppliers and carbon credits obtained from purchasing certified wood

. . .

27

Strategies thought to be sustainable might <u>not be</u>as sustainable as other alternatives

Environmental Analysis needs to be carefull done!

- (e.g. certified suppliers only)
- <u>Narrowing</u> Systems Boundaries & Impacts Categories may leads to a biased solution
 - (e.g focus on climate change)

Carbon Tunnel Vision

Eutrophication

Carbon Tunel (Jan Konietzko, Moving beyong Carbon Tunel Vision with a Sustainability Data Strategy, Forbes, Apr 7, 2022

Case-study III

TÉCNICO IJİ LISBOA How different social indicators influence the Supply Chain Decisions?

Case-Study V Automotive Industry components NPV Sustainability Economic indicators Environmental GDP **Unemployment Rate** Job creation Social

Mota, B, Gomes, M.I, Barbosa-Póvoa, A.P," Growth and jobs: supply chain design and planning towards socio-economic equity" (submitted)

Case-study III

Different social indicators significantly influence supply chain structure **NEED FOR:** careful analysis of contributions and relations between indicators and supply chain decisions is necessary

CAna Barbosa-Póvoa

IMCDM2025, Coimbra

Case-study III

Phase III

Socio-economic impact assessment

on

Supply chain structure

Actual job

creation

Having social concerns in mind what is the most equitable solution?

Impact on other socio-economic indicators:

	Improvement* in GDP-based indicator (%)	Improvement* in Unemployment Rate-based indicator (%)	Improvement* in Job Creation (%)	Decrease in NPV (%)	Total Improvement in Social Indicators (%)
Case 1 (GDP-based)	38	47	34	12	120
Case 2 (Unemployment rate-based)	8	98	20	11	126
Case B (Job creation)	37	29	35	12	101
compared to Case A	Mor	e Balanced Sol	utions		

Application of certain indicators can result in a trade-off with other socio-economic indicators and the effective number of jobs created

NEED FOR: broader analysis with different social criteria supported by this type of methodologies

CAna Barbosa-Póvoa

Other socio-

economic

indicators

Solving Multi-objective objective problems in real cases results:

- Overwhelming for the DM
- Difficult to compute
- Time consuming

New Methodology was proposed

Compute a subset of the Pareto front that:

- Captures the traits of the Pareto front
- Is as small as possible
- Is well spread through the Pareto front

Pareto Front Decomposition Method

Restrict objective space based on DM's previous knowledge:

- Requires from the DM for simple preference statements
- Discards only solutions that would not be interesting to the DM
- Restricts the search region *a priori*

Interactive method

Guides the DM through the Pareto front to:

- Further refine the PF into a narrower ROI
- Help the DM converge on a satisfactory solution

CAna Barbosa-Póvoa

3

2

32

COMBINE 3

STRATEGIES

Proposed methodology

- I. Problem formulation
 - 1. DM articulates problem statement and specifies relevant aspects
- 2. Initial Representation or ROI Definition
 - 1. DM decides if we wants to learn more about the problem or focus on a ROI
 - 2. DM is shown a PF representation and guided through the trade-offs

3. Interactive Refinement

- 1. DM wishes to find a satisfactory solution
- 2. The DM is shown alternatives and based on the DM's ranking the representation is refined

Representation Strategy

AUGMENCON2 method

$$\max_{x,s} \left\{ z_q(x) + \rho \sum_{k=1, k \neq q}^p 10^{k-1} \frac{s_k}{r_k} \right\}$$

subject to: $z_k(x) - s_k = \epsilon_k, \ k = 1, \dots, p, \ k \neq q$
 $s_k, \ge 0, \ k = 1, \dots, p, \ k \neq q$
 $x \in X.$

Has some drawbacks

- 1. Is very dependent on the computation of the Pareto front's bounds
- 2. When in more than two objectives, many redundant computations are done
- 3. Representation quality is not considered

Representation Strategy - Proposed methodology

- Grid-point based algorithm GPBA-C
 - ε-constraint based method

$$\max_{x,s} \left\{ z_q(x) + \rho \sum_{k=1, k \neq q}^p 10^{k-1} \frac{s_k}{r_k} \right\}$$

subject to: $z_k(x) - s_k = \epsilon_k, \ k = 1, \dots, p, \ k \neq q$
 $s_k, \ge 0, \ k = 1, \dots, p, \ k \neq q$
 $x \in X.$

- Improved by:
 - The algorithm skips redundant computations
 - The algorithm is made independent on the quality of the Nadir estimation
 - Refines the search grid within the problem's feasible region whenever a grid step is skipped.

PF Decomposition Method

- 1. Elicit criteria preferences
 - Total order: All elements in the considered set are comparable
 Z₁ Z₂ Z₂ ... Z_{p-1} Z_p
 Partial order: An ordering of the elements in which not all elements are comparable
 Z₁ Z₂ ... Z_{p-1} Z_p

- 1. Create ordered sets of criteria respecting DM's preferences
- 2. Define the ROI using constraints

Mesquita-Cunha, M., Figueira, J.R., Barbosa-Póvoa, A.P., 2025, *Decomposing the Pareto Front using preferences provided* by the decision-maker, under review

PF Decomposition Method

PF partition for order $z_1 \succ z_2 \succ z_3$ \tilde{z}_3 \tilde{z}_3 z_1 z_1 z_2 z_2

Interactive Method

- 1. Select subset to analyse
- 2. Analyse solutions and define cones
- 3. Add cone dominated constraints

Mesquita-Cunha, M., Figueira, J.R., Barbosa-Póvoa, A.P., 2025, *An interactive method for multi-objective optimization: integrating preferences through convex cones, under review*

Design and Planning the Meningitis Vaccine SC

Duarte, I., Mota, B., Pinto-Varela, T., Figueira, J, Barbosa-Póvoa, A.P., 2025. Multi-objective sustainable pharmaceutical supply chain design and Planning, under review

CAna Barbosa-Póvoa

Analysis

- Pareto front study
- Methodology assessment
 - Three preference scenarios for the DM:
 - Total order: NPV > Availability > Environmental Impact
 - Hesitation regarding the first objective Economic and Social: NPV~*Availability* > *Environmental Impact*
 - Hesitation regarding the first objective Economic and Social: NPV~Environmental Impact > Availability
 - The DM is simulated through linear and Chebyshev value functions using weight vectors:
 - $w^1 = (0.7, 0.2, 0.1)$ and $w^2 = (0.5, 0.3, 0.2)$ and $w^3 = (0.45, 0.35, 0.2)$
 - Use the first PF to know the DM's preferred point
 - Stop when best solution is in the subset

Results – Factories capacity usage

To improve the social impact, it is necessary to install a new factory, F3, in Africa. this improvement is associated with a gradual shift of production from factory F2 in France to factory F3 in Africa, while not producing at the US factory (F1).

CAna Barbosa-Póvoa

Results - ROI

42

We evaluate this in terms of computational efficiency and the number of solutions analysed by the DM.

Algorithm	Scenario	Models solved	PF	CPU (s)
Represent. Method	No Pref. Info.	169	133	344.51
Decompos. & Represent.	Total order	24	18	93.10 -
Decompos. & Represent.	1st hes Econ. and Soc.	29	20	323.72
Decompos. & Represent.	1st hes Econ. and Env.	49	40	231.35

PF decomposition (ROI) provides a significant reduction in PF size + CPU reduction

	Weight vector	Included methods	Iter.	Nbr. Comp.	CPU (s)		
Interactive	\mathbf{w}^1	Represent.& Inter.	3	8	1146.23	-	
method		Decomp. & Represent. & Inter	1	4	460.15	<u> </u>	B
	w^2	Represent.& Inter.	2	8	2091.19		US
w1NPV +		Decomp. & Represent. & Inter	2	4	459.87		CC
w2Availability -	w^3	Represent.& Inter.	2	8	2077.71	*	fra
wsenvinipaci		Decomp. & Represent. & Inter	1	4	961.49		ar

Benefits of using the complete framework are clear

CAna Barbosa-Póvoa

Main Conclusions

- Importance of having an integrated framework allows a systems view to assess the impact of in supply chain decisions when considering:
 - different options/decisions taken within the application of each indicator
 - Importance of a detailed understanding of the contributions of each environmental impact category to the different supply chain activities and total environmental single score
 - Different social indicators can significantly influence supply chain structure
- Further:
 - Explore further uncertainty not only on the problem characteristics (e.g. demand) but in the sustainability parameters LCA and Social Indicators
- Importance of having a more comprehensive multi-objective framework, allow:
 - analysis of the trade-offs and the impact of different decisions on the objective functions providing insights on the problem
 - significant efficiency improvements were obtained regarding a posteriori analysis when using the PF decomposition with representation methods
 - there are significant efficiency improvements regarding interactive procedure when combining the whole methodology
- Further:

- Integrate this process in a tool with an interface
- Study the scalability of this approach to more complex and larger problems

Special Thanks to:

OpLog Group

Ana Carvalho Bruna Mota, Cátia Silva Inês Duarte Mariana Cunha Tânia Pinto-Varela

and José Rui Figueira

Thank You

Contact: <a>apovoa@tecnico.ulisboa.pt

Acknowledgments to the Portuguese National Science Foundation (FCT), under the projects PTDC/EME-SIS/6019/2020; UIDB/00097/2025 and UIDP/00097/2025

And research grants; SFRH/BD/149441/2019; 2022.11365.BD

