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Statement of the problem

e The increasing adoption of electric vehicles calls for efficient management
and planning of charging infrastructure.

e Charging station operators need to set attractive but profitable prices.

e Once the prices have been set, users react to those prices by deciding where
to charge.

e Users have a price threshold and may reject using the charging system if
prices are too high.
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e The increasing adoption of electric vehicles calls for efficient management
and planning of charging infrastructure.

e Charging station operators need to set attractive but profitable prices.

e Once the prices have been set, users react to those prices by deciding where
to charge.

e Users have a price threshold and may reject using the charging system if
prices are too high.

e Bilevel optimization is a suitable framework to model this problem:
— At the upper level, the charging stations operator fixes prices.
— At the lower level, users decide where to charge.

e Users aim to minimize both the charging cost and the total time spent, so
we have a multiobjective optimization problem at the lower level.
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Some notes on bilevel optimization

min F(x,y)

X

subject to:
Q(Xay) <0 J: 15"'7q
where, for every fixed x, y solves:

min f(x,y)
y

subject to:

gh(Xy}’)go h:177p

— For every fixed x, y is an optimal solution of the lower level problem.
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Some notes on bilevel optimization and multiple objectives

min F(x,y)

X

subject to:
C;J(va) <O J:]-a?q
where, for every fixed x, y solves:
min |:f1(X7y)7"'7fm(Xa.y)
y
subject to:

gh(X7Y)<0 h:177p

— For every fixed x, y is an efficient solution of the lower level problem.

— Different possibilities for solving the multiobjective problem: weighted sum method,
lexicographic approach, e-constraints method or goal programming.
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Literature review

e Momber, |., Wogrin, S., & Gémez San Roman, T. (2016).Retail pricing: A bilevel program
for PEV aggregator secisions using indirect load control. /EEE Transactions on Power
Systems, (1), 464—473. https://doi.org/10.1109/ TPWRS.2014.2379637

— The model is not multiobjective but the structure of the bilevel model is the same
we are going to propose: the system operator at the upper level and the users at the
lower level.

e Gonzilez, S., Feijoo, F., Basso, F., Subramanian, V., Sankaranarayanan, S., & Das, T. K.
(2022).Routing and charging facility location for EVs under nodal pricing of electricity:
A bilevel model solved using special ordered set. |EEE Transactions on Smart Grid, (4),
3059-3068. https://doi.org/10.1109/TSG.2022.3159603

— Multiobjective at the upper level: minimize the charging cost and minimize the travel
time of electric vehicles.

e Zhang, B., Zhao, M., & Hu, X. (2023).Location planning of electric vehicle charging
station with users’ preferences and waiting time: Multiobjective bilevel programming model
and HNSGA-II algorithm. International Journal of Production Research, (5), 1394-1423.
https://doi.org/10.1080/00207543.2021.2023832

— Multiobjective at the upper level: minimize the total cost of locating an sizing the
charging station and minimize the service tardiness.
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Sets and parameters for the mathematical formulation

Sets

e | ={1,...,n} is the set of potential users.

e J={1,...,m} is the set of available charging stations.
Parameters

e d; > 0 is the energy required by user i € /.

e b; > 0 is the maximum price user i € | is willing to pay per unit of energy.

cjj = 0 is the travel time spent by user i € | to reach charging station j € J.

P; > 0 is the power installed in charging station j € J.

e C; > 0 is the capacity of charging station j € J.
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Decision variables

Decision variables

e m; > 0 is the price per unit of energy set in charging station j € J.

yi € {0,1} takes value 1 if user i € | uses the system.

x;j € {0,1} takes value 1 if user i € | goes to charging station j € J.

is enough to consider as possible prices the set of budgets {b;};,.
e We define the set of indices of different budgets, L = {1,...,|L|}.
e We define the ordered set different budgets, {b',...,bl*}

o bt < b~ if h <b.

e For each charging station j € J and each index | € L, we define the variables:
L _ {1 if charging station j is priced at b
S 71 0 otherwise

e We define a map o: | — L: o(i) = I if user i has a budget equal to b'.
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Mathematical formulation of the model

The total amount of money paid by the users is:

ZZ’]Tjd,'X,'j

icl jeJ

By the definition of v-variables it is true that, for every j € J:

IL]
_ Il
m = E b'v;
=1
Thus,
IL|
7Tjd,'X,'j = d,' b VJ Xij
iel jed iel jed =1
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Mathematical formulation

The upper level problem is:

mv?yx Zd,-z

s.t.:

L]
il jed \I=1

IL]

I _
E vi=1
=1

o(i

M?ZVJ'/

-

> by

of the model

jed
iel jed
iel
jed lel
iel
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Mathematical formulation of the model

The lower level problem is:
L]
I 1
N IDILOB DI
min el jed \ I=1

“Total time spent for charging”

ZX,'J':)/,‘ iel

jeJd

s.t.:

o(i)

<Y v iel jed
I=1

D dxi <G jed

iel

xj€{0,1} i€l jeJ
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Wardrop's equilibrium

e Wardrop's equilibrium is a concept used to describe the behaviour of multiple users
that share limited resources in a system.

e |t is typically used in problems related to road traffic on transport networks.

e Wardrop's equilibrium is attained when any user can reduce their travel time by
unilaterally changing their route.

1. First Wardrop's principle (user equilibrium): The travel times of the routes
used by each user are equal or less equal to the travel times of the available
alternatives routes.

2. Second Wardrop's principle (system equilibrium): The traffic organization is
made in such a way that the total cost of the system is minimized.

e Some properties:
— Selfish behaviour.

— In the equilibrium, users has not the incentive to change their decision.

9/14



How do we measure the time spent in the system?

e The fixed time spent by a user i when choosing a charging station j is:

C + di
i

~~ P;
travel time S~~~

charging time

e The amount of users going to a charging station j increases the time spent by the
users: the more users, the longer the time due to congestion and waiting time.

e Being f; the “flow” of users in charging station j € J:

2
Qﬁ =B (ZXU)

waiting time iel

e The total time spent in the system is:

- {Z i+ ) %ij +8 <Z XU) 2}

JjeJ Liel iel iel
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How do we measure the time spent in the system?

Z [Z ciixij + Z P, —Xij + B <ZX,J> :| can be linearized.

JjeJ iel iel iel

2
- <ZXU> = _ZXU+2ZXUXkJ

iel 1<i<k<sm

- x,f = x;; due to the binary character of x;.
— Products x;ix; can be linearized by introducing variables (), = x;jxi; € {0,1}

and the set of constraints:

iykelwthi<k jelJ

Vik)j S Xij
Yoy < Xig i kelwthi<k jeJ
Yiky = Xj+x—1 i,kelwithi<k jeJ

- <ZXU>2 =D % +2) )

i€l iel i€l kel
i<k
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A matheuristic algorithm to solve the problem
The algorithm combines:

— An evolutionary algorithm is used to explore the feasible set of the upper
level decision variables.

— The chromosomes are vectors of length |J| and encode vectors of prices:

1 7 300 | - | 2 6 1 1

|J| components

— The lower level problem is solved exactly using the weighted sum method.
— Two fitness values are computed per chromosome:

— wy = 0.1 and wp, = 0.9: prioritizes minimizing time.

— wy = 0.9 and wp, = 0.1: prioritizes minimizing cost.
— Is it better to solve the non-linear lower level problem or the linearized one?
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A matheuristic algorithm to solve the problem

e The generation of the initial population is totally random.

e The uniform crossover operator is used to generate children from the set of
parents.

e The mutation operator alters each gen independently with a probability of
1

m.

mutation p, =

e The population is subdivides in two groups:
— Subgroup 1: guided by the “optimistic” fitness.

— Subgroup 2: guided by the “pessimistic” fitness.

e The selection of survivors is made according to the two subgroups of popu-
lation.
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Conclusions and further research

e Conclusions:

— We have exploited the hierarchical nature of the problem to formulate a bilevel
model that is conceptually correct and truly reflects the interaction between
the charging station operator and the users.

— Users are modelled as multiobjective decision makers, considering both the
price paid and the time spent.

— We are testing the proposed matheuristic algorithm to solve the model.

e Additional considerations for further research:
— Introduce periods of time.

— Incorporate a realistic price structure: in a real situation it does not make
sense for a charging station with more power to be cheaper than one with
less power.

— Explore other methods, such as e-constraints or goal programming, to solve
the multiobjective optimization problem at the lower level.
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