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Motivation

* Highly correlated risks have become more and more usual in the insurance industry.
Accordingly, the usual diversification effect does not apply any more.

* Forinstance, the global warming has led to an increase in indemnity payments in lines such
as farming, household insurance, cars, etc. In fact, the frequency of droughts, floods,
hurricanes and other catastrophic weather events has significantly increased.

* Other important example is the cyber-insurance, where massive cyber-attacks, or attacks
with massive effects, destroy the diversification effectiveness (recall the great blackout,
two weeks ago).

* Some solutions are related to the financial market,

https://www.artemis.bm/news/beazleys-cyber-cat-bond-cairney-listed-on-the-bsx/

https://www.cmegroup.com/markets/weather.html#ttab_72YOxwi=futures

* Parametric insurance is the other relevant novelty,

https://descartesunderwriting.com/

https://actuariesclimateindex.org/home/

https://docta.ucm.es/entities/publication/380c9656-b097-4cd0-b88d-24101d482fc0O

* The academic actuarial approach mainly focuses on risk-sharing.

*  We will propose the risk redistribution as an alternative way.

* The main difference is that risk redistribution can be applied to existing portfolios.
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Framework

Consider the probability space (€2, F.IP) composed of the set of “states of the
world” (), the o—algebra F and the probability measure IP. Consider also
0 < n € N nsurers which will respectively pay the random indemnification
y; > 0, 7 = 1,2,..,n, within the time period [0,7]. Let us suppose that
{y;ig =12, .. n} C L2 (P), L? (IP) being the Banach space of random vari-
ables with finite expectation and variance endowed with the usual norm ||.||,
Without loss of generality,

E (y;) > 0. (1)

7 = 1...,n, will hold, E(.) denoting “mathematical expectation”. Thecse INSUT-
ance companies are interested in a risk-sharing contract, and y; ;, 7,7 = 1,.

will represent the indemnity ceded by the 1 — th company to the 5 — th one. In
particular, y; ;. 7 = 1...,n, will be the ndemmnity retained by the j — A msurer.
Such a contract will be usetul if every insurer reduces both risk and expected
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Framework

indemnity, where the risk measurement criterion will be discussed in Section

2.2. Consider
y=>) u 2)
i=1

Evidently,
Y; = Z Vi js (3)
=1

t = 1,..,n, holds, so (2) implies that

Z Zyu . (4)

i=1

The expected indemnity mitigation for every insurer leads to

E (y;) > > E(yi;). (5)
i=1
j =1, ..,n. This inequality, along with (2) and (4), leads to
ZIE (y;) zz (ZE Vi ) => | Y E(,) | =E@),
= = i=1 =1 =1

and the inequality in the chain becomes an equality. Consequently, (5) becomes

the equality
)= E(yi;), (6)
i=1

7 = 1....,n, and the strict mitigation of the expected indemnification is unfea-
sible. In other words, the risk-sharing contract will have to guarantee a risk
reduction under an identical expected indemnity for every insurer.
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Framework

Definition 1 Consider a positive m € N and the real-valued random variables
Uy, Us,...U,,. They are said to be co-monotone if their joint distribution s given
by the Fréchet-Hoeffding copula,

c(uy, ug, .., um) = Min{u;; 3 =1,..,m}
Jorfi<#; <1 §=1.m (]

Definition 2 Consider a positive m € N and the square matrix of real-valued
random variables (U;. J);"J:l This matriz is said to be of co-monotone rows if
Ji1,Uia,oonUim, Z;.nzl U;.; are co-monotone for1=1,..,m. []

Assumption I. Henceforth let us impose the matriz (y;. .j)?.jzl to have co-
monotone rows. ]
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Framework

Proposition 3 Fix 7 = 1.2....n and consider the functional L> (L) > z —
J; (z) € L? (IP) given by

yj(w)
Jj () (w) :== / x(s)ds L7}
0
for w € Q. Then, J; s well-defined. linear and continuous for both the norm
topologies and the weak™—topologies. The adjoint J; : L?(P) — LY (L) is

well-defined, linear, continuous for the norm and the weak—topologies, and it
1s grven by
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Framework

Let us take y; ; = J; (2:,;), 2.7 = 1,..,n. Though it is an abuse of language,
let us denote by 1 the obvious constant function of L™ (IL).?> Then,

Ji (1) = i, (9)

¢t = 1,..,n, is an evident consequence of (7), so (3) will hold if Z;:l By =
also holds, i = 1,2, ..,n. Thus, bearing in mind (6), the set &  (L>= (L))" of

feasible risk-sharing contracts will be characterized by

"

@ = (@iy);i;m1 € SCL@ (L )) e

O<IIJ J 2 N

: — Z;:—l =1, 1= 1.‘2....71 | (10)
| I = ( i (%:.4)) =Ely;), 3=1,2,..,n,

and every x = (z;, j);'z.j:j[ € § will be related to the retained/ceded risks
g =dilrss), &F=1,..m (11)

Obviously, (10) and (11) imply that Assumption I holds, that is, the rows of

n
(%4 )z.lj:1 are co-monotone.
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Framework

- - " . . 5 .
Consider the continuous and sub-linear function p; : L7 (P) — R, 7 = 1,..,n,
used by the 7 — th insurer in order to measure and manage its risk. Let us deal
with the optimization problem (see (10))

n

Min S | p; | =) i (2iy) RET (14)
gl

j=1

in order to look for the Pareto-optimal (or Pareto-efficient) risk-sharing con-
tracts.

Remark 7 Since § is a convex set (it is given by linear expressions, see (10))
and every p; is a convex (sub-linear) function. every Pareto-optimum of (1)
can be obtained by solving a scalar problem

n n
A==l i=1

where ay,..,a, > 0 and a1 +..+a,, = 1 (Nakayama, et al..1985). Conversely. if
in addition a; >0, j =1,..,n. then every solution of (15) is Pareto-efficient in
(14). Though (15) draws an analogy with the classical Monge- Kantorovich mass-
transfer problem (Anderson and Nash, 1987, or Jiménez-Guerra and Rodriguez-
Salinas. 1996, for a very general approach). the presence of J;. 1 = 1,.,n. is a
significant modification. Accordingly. the properties of the mass-transfer problem
cannot be used. [
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Risk measures

A function p : L? (P) — R is said to be sub-linear if it is sub-additive
(p(uy +us) < p(uy) + p(us)) and positively homogeneous (p (Au) = Ap (u) for
A > 0). A function p: L? (IP) — R is continuous and sub-linear if and only if

8, :={z€L*(P):—E(uz) <p(u),Vue L*(P)} (12)
is a weakly-compact subset of L? (IP) and
p(u) = Max {—E(uz); z € 8,} (13)

. 9 v Foa g - .
holds for every u € L= (IP). As a consequence of (12) and (13), p is weakly lower
semi-continuous.

A function p : L? (IP) — R is said to be decreasing if p (u1) < p(u2) holds
when u; > wup. If E, > 0, then a function p : L?*(P) — R is said to be
E,—translation invariant if p (u + A) = p (u) —E,A for A € R, and pis E,—mean
dominating if p(u) > —E,E(u). A function p : L?(P) — R is said to be
a coherent risk measure (Artzner et al, 1999) if it is continuous, sub-linear,
1—translation invariant and decreasing. A function p : L? (P) — R is said
to be an expectation bounded risk measure (Rockafellar et al., 2006) if it is
continuous, sub-linear, 1—translation mmvariant and 1—mean dominating.
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Risk measures

There are many interesting examples satistying the conditions above. For
instance, the absolute deviation (p(u) = E (ju — [E (u)|)), the standard devia-
tion (p(u) = ||lu — [E(u)||,) and the downside standard semi-deviation (p (u) =
‘(IE (u) —u)"
dominating. Examples of coherent and expectation bounded risk measures are
the CVQ@R, the RCV@QR, the WCV@R and many versions of the WVQR.
Other usual examples such as the entropic risk measure (Kupper and Schacher-
mayer, 2011), which is not sub-additive, the entropic V@R (EV@R, Ahmadi-
Javid, 2012), which cannot be extended to the whole L? (IP), or some risk mea-
sures defined on Orlicz spaces (Cheridito and Tianhui, 2009), do not satisty all
the imposed properties.

) are continuos, sub-linear, 0—translation invariant and 0—mean
9

&~

Proposition 4 Suppose that p : L?> (P) — R is sub-linear and continuous.
a) p is decreasing if and only if = > 0 for every z € 0,.
Suppose that E, > 0.
b) p is E,—translation imvariant if and only if [E(z) = E, for every z € 9,.
c) p 1s E,—mean dominating if and only of E, € 0,. [
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Optimality conditions

Proposition 8 Problem (15) is bounded and solvable (it attains its optimal

value).

Theorem 9 a) Problem

;
n

Mazx — | > (1,A:) + > AE(y;)
i=1 j=1
Bi kI logaA:) 20, 63=1;.00

2y & (")pj. A; € It (L), )\j eR 2,9=1,.,58

\

is a dual of (15). ((:j l;:] (A 5 (N );:1 being the decision variable. Fur-
thermore, it is bounded and solvable, and its optimal value equals the optimal

value of (15).

b) If ((ij J;.":I ; (\,)n . (’\J’)),} 1) solves (17) then
i= j=

A; = Max {*‘]i' (ajij +,\J) 5 1= Wy n}. (18)

i.J=1 3
J J=

gr=10....n
¢) If (i) ;_, is (15)-feasible and ((:j;;',l.(i;)" (,\J) ) is (17)-
— i=1 1
feasible. then they solve the corresponding problem if and only if
n
a;E (lj > J; (i‘i.j)) <
i=1

e (_"\i 4 18 (aj:_,- +}\j)) =0, i,j=1,.,n.

I
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Optimality conditions

d) If (3.;)},_, solves (15) and ((;J”‘ (&) (%) )Sol'ves (17).

hi=1 7=l i=1 =1
then (i?g,j)njzl solves the linear problem

i,

Min > > o E (27 (24 ))
i=1j=1 (20)

(Iz’.j),’_j:l €S,

and the optimal objectives of (15) and (20) coincide.
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Systemic risk

Consider the global indemnification y € L? (P) of (2) and a convex cone V such

that
yeVcL:(P)={veLl®(P);0<v}. (23)
Important particular cases are V = L7 (P), V =V, where
V, ={ve L*0<v<ny for somencR n=>0}

and V = lrl J1,-50n ) where

Vig,... 7.) == {v = Z Ji(2i);zi € L (L), 2 >0, e =1, n} . (24)

i=1

Throughout Section 4.2 let us suppose that E, > 0, and consider the sub-
linear, continuous, E,—translation invariant and E,—mean dominating function
p : L*(IP) — R, and the linear, continuous and (non necessarily strictly)
increasing function W : L* (P) — R. According to the Riesz theorem (Zeidler,
1995), there exists a unique zy € L? (P), zy > 0, such that ¥ (u) = [E (zyu) for

every u € L? (P).
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Systemic risk

Consider an insurer which deals with p to manage 1ts risk
and with W to price its insurance policies. If the insurer could select the total
indemnification v £ V" to be paid and the expected profit M > 0 to be reached,

1t would solve the optimization problem
Min {p(—v);: E(v(izg —1)) 2 M, vV}

Suppose that
E(y(zg —1)) >0

Proceeding as in (16), the Lagrangian of (25) becomes
L(v,z,A)=E(v(A+2z—Azw))+MA
for (v,2z,A) €V x d, x B with A = 0, and the dual of (25) becomes

Max MA
At z—Azg e V"
(z,A) €8, xR, A>0,

(27)
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Systemic risk

where V* = {u € L? (P);[E(uv) > 0 Yv € V| is the usual dual cone of V. Fur-
thermore, there 1s no dualhity gap between (25) and (27) because (26) imples
the fulfillment of the Slater quahfication (Luenberger, 1969). In particular, the
necessary and sufficient optimality conditions for (25) and (27) are

E(3%) > E(23), Y2 €,
E(z} (Z\+7:-J\zq, )=0 (28)
AME(#(2z¢g —1))=M) =0

Notice that (25) 1s bounded because (23) and the properties of p imply that
p(—v) = E,E(v) = 0 holds if v 1s (25)-feasible. Thus, Theorem 10 below 1s
presented without proof because the non proved parts are analogous to those of

Theorem 9.
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Systemic risk

Theorem 10 a) (25) and (27) are feasible and bounded. Moreover, (27) is
solvable and both optimal values coincide.

b) If v and (;3,5\) are (25)-feasible and (27)-feasible respectively. then they
solve the comsponding problem if and only if (28) holds. O

Corollary 11 a) The (27)-feasible set and the solutions of this problem do
not depend on M. Moreover, if there are more than one solution, then all of
them have the same component A\, and only the first component z may become

different.

b) (25) is solvable (1.e., attains its optimal value) if and only if so does (25)
for M = 1. in which case v solves (25) for M = 1 if and only if Mv solves (25).

c) If (2;\) solves (27) (and therefore A is the optimal value of (25) and (27)
for M =1), then A < p(—y) JE ((z¢ — 1)y) (see (26)).
d) If 2¢ <1+ & with& > 0 and (} ;\) solves (27), then A > E,/€.

Definition 12 a) The component \ of the solution of (27) will be said to be the
systemic risk of (y,V, p, 2w ).
b) If v solves (25) for M = 1, then v will be said to be a benchmark policy

of (y,V,p,2v)® D
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Systemic risk

Remark 13 a) Under an upper bound for zy, Corollary 11d yields a lower
bound for the systemic risk, which becomes strictly positive if E, > 0 (CV@R,
WV@QR, WCV@R, RCV@R, ete.).

b) If E, = 0 (absolute deviation, standard deviation, downside standard
semi-deviation, etc.), then the systemic risk A might vanish. For instance, if
V =L2 (P) and zqy = 1 + £ with £ strictly positive, the dual constraint implies
that A+ 2z —A(14+&) =20, 2.e., 2z = M. Taking expectations, and bearing in
maind Proposition 4b, 0 > A&, and therefore 0 = AE because A > 0. Since € > 0,
one has A = 0 for every (27)-feasible (z, \).

¢) Notice that Corollary 11c yields an upper bound of the systemie risk.

d) Corollary 11a shows that the non formal expression

“Risk = \ x Guaranteed — Ezpected Profit”

holds. A being the systemic risk of (y,V,p, zw) and under an efficient selection
by the insurer. An “inefficient insurer” will face a risk level higher than the
product of the systemic risk and its guaranteed expected profit.

e) Suppose that a benchmark v of (y,V,p,zv) exists. If A > 0, then the
third condition in (28) implies that E (v (zy — 1)) = 1. In other words, under
optimality. the guaranteed expected profit equals the expected profit. O
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Background risk

Consider again the same notation as

in Section 3. Proposition 8 guarantees that (15) 15 solvable. In particular, for

k= 1....n. one can consider {.—:1_;.];:1 such that o, = 1 and a; = 01f 3 # £k,

; % T
a corresponding solution (5::) of (15), and the optimal objective value
3 )5 5

I = p; <_]§ J; (5‘32“;))

Definition 14 Vector

(L), = (pj (—ZJE (:,-;”))) eR" (29)
j=1

=1 ?
will be said to be the ideal point of (14). |

Proposition 15 Suppose that E, > 0 and every p; is both E, —mean dom-
inating and E, —translation mvariant, 3 = 1,...,n. Consider the convex cone
(24). Consider § > 0, zy =1+ & and M; = {E(y;), 73 = 1,..,n. Consider
finally the ideal point (I; ];-‘=] and the systemic risks A; of (y, Vi, . 1.),Pj 2w),

j=1,..n Then I; > M;};, j=1,. . n

IMCDM/MCDA 2025 Optimal comonotonic actuarial risk redistribution Alejandro Balbas 19



Background risk

Proposition 17 Consider a Pareto-solution (z; ; }:-1‘_]-=] of (14) (whose existence

is guaranteed by Proposition 8). The j —th objective P; (— > il }) and the
;=]
tdeal point satisfy P; (— I J; (Zi ,l) > 1;, 3 =1, n_ In particular, if £ > 0,
1=1

zg =14+§ M; = EE(y;) and 5\J is the systemic risk of (y,V, J,dn)2 Pjs 2W) ;5

then
-~ 1 Zn -

1=1
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Background risk

Definition 18 Under the conditions of the latter proposition,

P; (— Z Ji (z; ; ])

i=1

will be called the background risk of the 3 — th insurer under the optimal risk-
sharing contract (z; ;) nJ The difference

n
P; (—ZJ;‘ (‘:E;j)) —Ij >0
1=1

may be interpreted as he “gap” between the background risk and the ideal one,
which could be achieved if the 3 — th insurer were the unique decision maker in
the risk-sharing plan. Similarly, the difference

ij( ZJ(:::”)—,\.‘-;O

may be interpreted as the “gap” between the background risk per dollar of ex-
pected profit and the systemic (“énvincible”) risk per dollar of expected profit,
which could be achieved if the 3 — th insurer could decide the set of policies to
sell.
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Coalitions, bargaining set
and core

every optimal sharing contract (z; ; ):,“v]:] £ § also imphes the collaboration of
all the involved insurers, 1t 1s natural to deal with the key notions in cooperative
games, that 1s, the concepts of coalition, core and bargaining set (Aumann and
Maschler, 1964, or Maschler, 1976). Consider the set A = {1,2, ., n} and the
set 2% composed of the subsets of A. The j — th insurer will be identified with
the elements j € A or {3} € 2*. Every B € 2%\ {@} will represent a coalition
containing those insurers belonging to B. In particular, A will be called the
grand coalition. If B € 24 {@} contains m elements (0 < m < n), Wg C R"
will be the compact set

Wg:=qa=(a;);cp; @j 20 for jeB, Y a;=1)CR™ (32)
JEB

Similarly, S'Z will denote the subset of (L* (L))" which is analogous to S (see

(10)). Obviously, as S, S'Z is non void (Proposition 5) and weakly* —compact.
Henceforth we will denote

P(4):={(B,2=(®i,);;e5); B€2*\ {2} andz  SE},

pglzx) = (pj (—ZL (:rz_J))) eR™
1=B icB

JE

and

for every z = (21;); jep € (L (L))" .
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Coalitions, bargaining set
and core

Lemma 19 If x € S, then there exists a Pareto-solution = of (1) such that
palz) < pylz). O

Lemma 19 allows us to shghtly simphty the formal definitions of core and
bargaining set. Let us adapt the definitions given in Hervés-Estévez and Moreno-

Garcia (2018).

Definition 20 a) Given a Pareto-efficient (or Pareto-optimal) solution z =
(5 ]l?_:] of (14) and (B,x == '}:-I_j-:l) e P(A), it will be said that (B, x)
blocks (or objects) z if

. icB ‘ i=1
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Coalitions, bargaining set
and core

holds for every j € B, and at least one inequality s strict.
b) Suppose that x = (z; ; }:ﬂl-j=1 is a Pareto-solution of (1) objected by
(B _ (\" i : - (C __ (c\" i :
(B,x = (xz'j)i-1=1) € P(A). Consider (C,x = (xl_j)=‘j=1) € P(A)
such that CNB # @ and C'\ B # @. It will be said that (VC..;z:'jC ) counter-blocks
(or counter-objects) (B,z'E) if

(pe)(p)

holds for every j €« C N B and

2 (‘Z‘L‘ (-‘Eg)) <P (* > ‘i‘w’) (34)
icc i=1

holds for every 3 € C'\ B, with at least a strict inequality in (33) or (84).

¢) The core will be composed of those Pareto-solutions of (14) which are not
blocked by any (B.z) € P(A).

d) The bargaining set will be composed by those Pareto solutions x of (14)
such that either, x is in the core, or for every (_B,x'B) £ P (A) blocking x there

exists (C,z') € P(A) counter-blocking (B,z'E). O
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Conclusion

Highly correlated risks are becoming more and more usual for insurance
companies.

Practical solutions are related to financial markets by means of ILS
(insurance linked securities) and/or parametric insurance (actuarial
indices)

An alternative approaches are related to risk-sharing problems.

Our novelty is the co-monotonic risk-redistribution.

With respect to the risk-sharing approach, the risk-redistribution one
allows us to deal with existing portfolios.
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Conclusion

 This approach leads to a convex multidobjective optimization problem
whose dual and Pareto solution have been properly characterized.
Actually, the problem may be solved by means of the given conditions.

* Nevertheless, this new approach generates other problems which are
absent when dealing with risk-sharing. Indeed, the usual core and
bargaining set of cooperative games have to be studied

e Partial conclusions may be reached by dealing with the systemic and the
background risk, but further theoretical studies are needed.
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