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This study applies the
Technique for Order

Preference by Similarity to 
Ideal Solution (TOPSIS), a 
Multi-Criteria Decision-

Making (MCDM) method, 
to rank and select the

most suitable BDM for 3 
distinct production lines.

However, choosing the
right BDM for different

assembly line scenarios
is a complex task.

One of the first steps in 
identifying the production
bottleneck is selecting the
most suitable bottleneck
detection method (BDM)

Unlike past research 
focused on general 

industrial decisions, this
work introduces a tailored

approach for BDM 
selection in distinct

manufacturing
environments.

Identifying production
bottlenecks is essential

for improving
manufacturing

throughput

Study Overview

Azhar et al., 2021; Basílio et al., 20222



Long-term: Persistent constraints over
extended periods (e.g., relatively high

process time)

Short-term: Temporary (e.g., machine
breakdown)

Dynamic: Bottlenecks can shift due to variability in process times or
unforeseen disruptions

Static: Bottlenecks are typically fixed, no variation or special causes affect the
process
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Roser et al., 2004; Kuo et al., 1996; Betterton & Silver, 2012

Shifting
Bottleneck

Provides value in planning
and designing a 

manufacturing system

Useful in identifying special
causes and allowing for a 

quick reaction
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Bottleneck Detection Methods

Category Pros Cons

BDMs based on 
Static Models

More practical for environments with
limited digital data and lower

technological investment

Lack of short-term analysis and
precision

BDMs based on 
Simulations

More accurate than static models, 
capable of both short-term and long-

term analysis

Requires significant setup time and may
overlook process nuances

BDMs based on 
Data-Driven 
Approaches

High accuracy and efficiency, capable of
both short-term and long-term analysis

Requires real-time data, which may not
always be available

Xu et al., 2021; Tang et al., 2024; Betterton & Silver, 2012; Subramaniyan et al., 2016; Lai et al., 2021; 
Roser et al., 2017; Chiang et al., 2000; Roser et al., 2015; Roser & Nakano, 20154



Bottleneck Detection Methods
Category BDM Description

BDMs based on 
Static Models

Process Time Method (PTM) Identifies bottlenecks by comparing resources’ average process times

Utilization Method (UM) Detects bottlenecks based on the utilization rate of each resource

BDMs based on 
Simulations

Simulation Methods (SM) Simulates system behavior to observe where bottlenecks emerge

BDMs based on 
Data-Driven 
Approaches

Turning Point Method (TPM) Finds bottlenecks by analyzing shifts in station throughput over time

Interdeparture Time Variance Method (ITVM) Locates bottlenecks by measuring variance in part interdeparture times

Active Period Method (APM) Detects bottlenecks by tracking the active working periods of stations

Bottleneck Walk Method (BWM) Observes inventory build-up between stations to spot bottlenecks

Arrow Method (AM) Uses directional inventory flow to infer likely bottleneck locations

Inventory-Based Methods (IBM) Identifies bottlenecks by monitoring inventory levels and accumulation

Xu et al., 2021; Tang et al., 2024; Betterton & Silver, 2012; Subramaniyan et al., 2016; Lai et al., 2021; 
Roser et al., 2017; Chiang et al., 2000; Roser et al., 2015; Roser & Nakano, 20155



TOPSIS for BDM Selection

Tzeng & Huang, 2011; Ishizaka & Nemery, 2013; Madanchian & Taherdoost, 2023

Define Performance Scores

Define the performance for 
each alternative based on

multiple criteria

01

Weight Criteria

Assign importance to 
each criterion

02

Normalize Data

Adjust values to 
ensure comparability

03

Measure the distance of each
alternative from the ideal and

worst-case scenarios

Calculate Distances

04

Rank Alternatives

Rank based on proximity to 
the ideal solution relative to 

the worst-case

05

Why 
TOPSIS?

Minimal input requirements
Compared to other

MCDM methods

Ease of Use
No complex computations, 

spreadsheet-friendly

Straightforward Results
Best solution is the one
closest to the ideal and

furthest from the anti-ideal

TOPSIS 5-Step Method

Developed by Hwang & Yoon, in 1981

Identifies an ideal and anti-ideal
solution, ranking alternatives based

on their proximity to both
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Alternatives and Criteria

Alternative

PTM

UM

TPM

ITVM

APM

BWM

AM

IBM

SM

Rating

Criterion 1 3 Objective

Data Availability
Manual data 

collection
Requires digital 

manufacturing data

Accuracy Low accuracy High accuracy

Adaptability Not flexible
Easily adaptable to 

different line
dynamics

Time 
Requirement

Quick to apply
Requires more time 

to be applied
7

A 1–3 scale was used for performance scores, as the classification was mostly 
based on document analysis and qualitative inputs rather than quantitative data



Performance Scores

Criterion

Alternative
Data 

Availability
Accuracy Adaptability

Time 
Requirement

PTM 1 1 3 2

UM 2 1 3 1

TPM 3 2 2 2

ITVM 2 3 3 2

APM 3 3 1 2

BWM 1 3 1 3

AM 3 2 2 2

IBM 3 1 1 2

SM 2 2 2 3

Roser & Nakano, 2015; Roser et al., 2017; West et al., 2022; Roser et al., 2015; Roh et al., 2018; Betterton & Silver, 2012

Adaptability:
1: APM, BWM, and IBM struggle in non-standard layouts (e.g., lack of
buffers between stations or having multi-operator dynamics);
2: TPM, AM, and SM can be adapted with some adjustments;
3: ITVM, PTM, and UM are easily adjustable to unusual process
dynamics.

Data Availability:
1: PTM and BWM, requiring only manual data collection ;
2: UM, ITVM, and SM require basic real-time data (e.g., UM only needs
utilization rates; ITVM mainly needs final timestamps);
3: TPM, APM, AM, and IBM demand detailed, interdependente real-time
data, such as start and end times of each process or buffer states.

Accuracy:
Scored based on results from previous studies:
1: PTM, UM, and IBM;
2: TPM and AM;
3: BWM, APM, and ITVM

Time Requirement:
1: UM, due to simple calculations of utilization rates;
2: Other data-driven methods and the PTM (depending on the sample
size needed);
3: BWM (extensive observations needed) and SM (model building and
calibration).

Performance scores on the m selected criteria i were
attributed to each a of the n BDMs (alternatives):

8



Performance Scores

Roser & Nakano, 2015; Roser et al., 2017; West et al., 2022; Roser et al., 2015; Roh et al., 2018; Betterton & Silver, 2012

Criterion

Alternative
Data 

Availability
Accuracy Adaptability

Time 
Requirement

PTM 1 1 3 2

UM 2 1 3 1

TPM 3 2 2 2

ITVM 2 3 3 2

APM 3 3 1 2

BWM 1 3 1 3

AM 3 2 2 2

IBM 3 1 1 2

SM 2 2 2 3

The table’s values are the values of the decision matrix 𝑿 = (𝒙𝒂𝒊)
where i = 1, …, m criteria and a = 1, …, n alternatives.
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Production Line Profiles and Limitations

No real-time data available; 
highly limited data environment

L05C THT2A L35

No real-time data, but structured 
buffer systems support operations

Some real-time data available, 
but inconsistent

Simple dynamics, similar to 
classical flow lines

Stable and regular flow 
line behavior

Irregular flow, requiring flexible 
and adaptive methods

10



Criteria Weight

Criterion

Line
Data 

Availability
Accuracy Adaptability

Time 
Requirement

L05C 0,5 0,2 0,2 0,1

THT2A 0,5 0,3 0,1 0,1

L35 0,2 0,3 0,4 0,1

Since the lines have distinct characteristics, the criteria weights
were adapted for each case using a Direct Rating Method.

This method works by assigning 
weights directly to each criterion for 

each line based on the decision-
maker’s experience and 

understanding

Although it relies on 
subjective judgement, it is a 

quite simple, fast, and 
intuitive method to use.

For THT2A, data availability remains crucial, while

accuracy gains importance over adaptability, given its a

flow line setup.

Across all lines, time requirement is the least important,

serving mainly as a tiebreaker.

For L05C, data availability is prioritized due to the lack of

real-time data. Accuracy and adaptability are moderately

weighted, as the line resembles a typical flow line.

For L35, with some real-time data, adaptability is prioritized

to handle its unusual flow dynamics. Accuracy is also

important, while data availability becomes less critical.11



Data Normalization

Even though all scores are on a 1–3 scale, some criteria are
to be maximized and others minimized, so normalization is
needed.

The normalization is done by dividing each performance by
the highest value, 𝒖𝒂

+, if the criterion is to be maximized:

𝒓𝒂𝒊 =
𝒙𝒂𝒊

𝒖𝒂
+ ,for a = 1, …, n and i = 1, …, m, where 𝑢𝑎

+ = 𝑚𝑎𝑥 𝑥𝑎𝑖

Or by the lowest value, 𝒖𝒂
−, if the criterion is to be minimized:

𝒓𝒂𝒊 =
𝒙𝒂𝒊

𝒖𝒂
− ,for a = 1, …, n and i = 1, …, m, where 𝑢𝑎

− = 𝑚𝑖𝑛(𝑥𝑎𝑖)

The normalized performance score matrix, 𝒓𝒂𝒊, is as follows:
12



Distances Calculation

The next step is to consider the criteria weights, by multiplying the normalized matrix 𝒓𝒂𝒊 by their
corresponding weights 𝒘𝒊, for each assembly line distinctively:

𝒗𝒂𝒊 = 𝒘𝒊 × 𝒓𝒂𝒊 ,for a = 1, …, n and i = 1, …, m

For each line, the 𝒗𝒂𝒊 matrices are presented below:
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Distances Calculation

For each line, the 𝒗𝒂𝒊 matrices are then used to compare each alternative to an ideal and anti-ideal
solution, which are defined by collecting the best and worst performance on each criterion of the weighted
normalized decision matrices, respectively 𝑨+ and 𝑨−.

𝑨+ = {𝒗𝟏
+; . . . , ; 𝒗𝒎

+ } ,for a = 1, …, n and i = 1, …, m, where 𝑣𝑖
+ = 𝑚𝑎𝑥𝑎(𝑣𝑎𝑖) if the criterion is to be maximized

or 𝑣𝑖
+ = 𝑚𝑖𝑛𝑎(𝑣𝑎𝑖) if the criterion is to be minimized

𝑨− = {𝒗𝟏
−; . . . ; 𝒗𝒎

− } ,for a = 1, …, n and i = 1, …, m, where 𝑣𝑖
− = 𝑚𝑖𝑛𝑎(𝑣𝑎𝑖) if the criterion is to be maximized

or 𝑣𝑖
− = 𝑚𝑎𝑥𝑎(𝑣𝑎𝑖) if the criterion is to be minimized

So, for each assembly line the ideal and anti-ideal solutions are:

Ideal Solutions Anti-Ideal Solutions
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Distances Calculation

The fourth step is to calculate the distance of each alternative to the ideal and anti-ideal solutions, given by 
𝒅𝒂
+ and 𝒅𝒂

−, respectively:

𝒅𝒂
+ = σ𝒊(𝒗𝒊

+ − 𝒗𝒂𝒊)𝟐 ,for a = 1, …, n and i = 1, …, m

𝒅𝒂
− = σ𝒊(𝒗𝒊

− − 𝒗𝒂𝒊)
𝟐 ,for a = 1, …, n and i = 1, …, m

For each assembly line, the distances of each alternative to the ideal and anti-ideal solutions are:

Distances to the Ideal Solutions Distances to the Anti-Ideal Solutions
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Ranking Alternatives

The final step involves calculating the relative closeness coefficient, 𝑪𝒂, of each alternative:

𝑪𝒂 =
𝒅𝒂
+

𝒅𝒂
+ + 𝒅𝒂

− ,for a = 1, …, n This coefficient’s value is always 
between 0 and 1. The closer to 1, the 
closer the alternative is to the ideal 
solution than the anti-ideal one, so 

the more preferred the alternative is. 

Line

Alternative L05C THT2A L35

PTM 0,86 0,81 0,40

UM 0,52 0,50 0,46

TPM 0,12 0,13 0,33

ITVM 0,52 0,52 0,52

APM 0,14 0,19 0,34

BWM 0,81 0,84 0,33

AM 0,12 0,13 0,33

IBM 0,09 0,09 0,16

SM 0,48 0,48 0,31

TOPSIS can suffer from bias due to subjective 
criteria weighting. To reduce this impact, the 

first and second highest-ranked alternative for 
each line were considered, rather than relying 

exclusively on the highest-ranked option.

Madanchian & Taherdoost, 202416



BDMs Selection

BWM discarded due to 
lack of defined buffers

PTM is selected as it does not 
rely on buffer information and 
still provides robust insights

ITVM was selected to best 
match the system’s dynamics

UM is less suited for 
dynamic systems

BWM was chosen for its 
superior performance in 
terms of accuracy and 

suitability

Flow-line dynamics and higher 
accuracy favor BWM over PTM

L05C

THT2A

L35
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Contribution and Future Work

By integrating systematic decision-making into bottleneck detection, this study provides a
replicable framework for industries aiming to improve throughput under different operational
constraints;

Future research could apply alternative MCDM methods, such as AHP or VIKOR, to validate
findings and compare outcomes.
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Thank you!

Questions


