

Selection of bottleneck detection methods using multi-criteria decision making 1st Iberian Conference on MCDM/A

Pedro Costa Ana Moura

09/05/2025

Study Overview

Identifying **production bottlenecks** is essential for improving manufacturing throughput

This study applies the Technique for Order Preference by Similarity to Ideal Solution (**TOPSIS**), a Multi-Criteria Decision-Making (MCDM) method, to **rank and select the most suitable BDM** for 3 distinct production lines. Unlike past research focused on general industrial decisions, this work introduces a **tailored approach** for BDM selection in **distinct manufacturing environments**. One of the first steps in identifying the production bottleneck is selecting the most suitable bottleneck detection method (BDM)

However, **choosing the right BDM** for different assembly line scenarios is a complex task.

Bottleneck

It's the resource that limits the throughput of a process

turing em	Static: Bottlenecks a	are typica	ally fixed, no variation or special causes a process	ffect the	
fac /ste					
Manu Sy	Dynamic : Bottle	enecks c u	an shift due to variability in process times nforeseen disruptions	s or	
				_	Shifting
Useful cause	in identifying special es and allowing for a quick reaction	<	Short-term: Temporary (e.g., machine breakdown)	Bott Ana	Bottleneck
				len aly:	←────
Provio a mar	des value in planning and designing a nufacturing system	•	Long-term: Persistent constraints over extended periods (e.g., relatively high process time)	neck sis	

Bottleneck Detection Methods

Category	Pros	Cons
BDMs based on Static Models	More practical for environments with limited digital data and lower technological investment	Lack of short-term analysis and precision
BDMs based on Simulations	More accurate than static models, capable of both short-term and long- term analysis	Requires significant setup time and may overlook process nuances
BDMs based on Data-Driven Approaches	High accuracy and efficiency, capable of both short-term and long-term analysis	Requires real-time data , which may not always be available

Xu et al., 2021; Tang et al., 2024; Betterton & Silver, 2012; Subramaniyan et al., 2016; Lai et al., 2021; Roser et al., 2017; Chiang et al., 2000; Roser et al., 2015; Roser & Nakano, 2015

Bottleneck Detection Methods

Category	BDM	Description		
BDMs based on	Process Time Method (PTM)	Identifies bottlenecks by comparing resources' average process times		
Static Models	Utilization Method (UM)	Detects bottlenecks based on the utilization rate of each resource		
BDMs based on Simulations	Simulation Methods (SM)	Simulates system behavior to observe where bottlenecks emerge		
	Turning Point Method (TPM)	Finds bottlenecks by analyzing shifts in station throughput over time		
	Interdeparture Time Variance Method (ITVM)	Locates bottlenecks by measuring variance in part interdeparture times		
BDMs based on	Active Period Method (APM)	Detects bottlenecks by tracking the active working periods of stations		
Approaches	Bottleneck Walk Method (BWM)	Observes inventory build-up between stations to spot bottlenecks		
	Arrow Method (AM)	Uses directional inventory flow to infer likely bottleneck locations		
	Inventory-Based Methods (IBM)	Identifies bottlenecks by monitoring inventory levels and accumulation		

Xu et al., 2021; Tang et al., 2024; Betterton & Silver, 2012; Subramaniyan et al., 2016; Lai et al., 2021; Roser et al., 2017; Chiang et al., 2000; Roser et al., 2015; Roser & Nakano, 2015

TOPSIS for BDM Selection

Alternatives and Criteria

Alternative
PTM
UM
ТРМ
ITVM
APM
BWM
AM
IBM
SM

A 1-3 scale was used for performance scores, as the classification was mostly based on document analysis and qualitative inputs rather than quantitative data

Performance Scores

Performance scores on the m selected criteria i were attributed to each a of the n BDMs (alternatives):

		Criterion						
Alternative	Data Availability	Accuracy	Adaptability	Time Requirement				
РТМ	1	1	3	2				
UM	2	1	3	1				
ТРМ	3	2	2	2				
ITVM	2	3	3	2				
APM	3	3	1	2				
BWM	1	3	1	3				
AM	3	2	2	2				
IBM	3	1	1	2				
SM	2	2	2	3				

Data Availability:

PTM and BWM, requiring only manual data collection;
UM, ITVM, and SM require basic real-time data (e.g., UM only needs utilization rates; ITVM mainly needs final timestamps);
TPM, APM, AM, and IBM demand detailed, interdependente real-time data, such as start and end times of each process or buffer states.

Accuracy:

Scored based on results from previous studies: 1: PTM, UM, and IBM; 2: TPM and AM; 3: BWM, APM, and ITVM

Adaptability:

1: APM, BWM, and IBM struggle in non-standard layouts (e.g., lack of buffers between stations or having multi-operator dynamics);

2: TPM, AM, and SM can be adapted with some adjustments;

3: ITVM, PTM, and UM are easily adjustable to unusual process dynamics.

Time Requirement:

1: UM, due to simple calculations of utilization rates;

2: Other data-driven methods and the PTM (depending on the sample size needed);

3: BWM (extensive observations needed) and SM (model building and calibration).

Performance Scores

The table's values are the values of the decision matrix $X = (x_{ai})$ where i = 1, ..., m criteria and a = 1, ..., n alternatives.

	Criterion				
Alternative	Data Availability	Accuracy	Adaptability	Time Requirement	
PTM	1	1	3	2	
UM	2	1	3	1	
ТРМ	3	2	2	2	
ΙΤ٧Μ	2	3	3	2	
APM	3	3	1	2	
BWM	1	3	1	3	
AM	3	2	2	2	
IBM	3	1	1	2	
SM	2	2	2	3	

Production Line Profiles and Limitations

L05C

THT2A

L35

empre que o

CARRO junto

De 4 em 4

unidades, colocar

no carro de PA

No real-time data available; highly limited data environment

Simple dynamics, similar to classical flow lines

No real-time data, but **structured buffer systems** support operations

Stable and r**egular flow line** behavior Some **real-time data available**, but inconsistent

40

Irregular flow, requiring flexible and adaptive methods

Criteria Weight

Since the lines have distinct characteristics, the criteria weights were adapted for each case using a **<u>Direct Rating Method</u>**.

This method works by assigning weights directly to each criterion for each line **based on the decisionmaker's experience and understanding**

Criterion Data Time Line Adaptability Accuracy Requirement **Availability** 0.5 L05C 0.2 0.2 0.1 THT2A 0.5 0.3 0.1 0.1 L35 0.2 0.3 0.4 0.1

Across all lines, **time requirement** is the least important, serving mainly as a tiebreaker.

For **L05C**, **data availability** is prioritized due to the lack of real-time data. Accuracy and **adaptability** are moderately weighted, as the line resembles a typical flow line.

For **THT2A**, **data availability** remains crucial, while **accuracy** gains importance over **adaptability**, given its a flow line setup.

For L35, with some real-time data, **adaptability** is prioritized to handle its unusual flow dynamics. **Accuracy** is also important, while **data availability** becomes less critical.

Although it relies on subjective judgement, it is a quite **simple, fast, and intuitive** method to use.

Data Normalization

- Even though all scores are on a 1-3 scale, some criteria are to be maximized and others minimized, so normalization is needed.
- The normalization is done by **dividing each performance by the highest value,** u_a^+ , if the criterion is to be **maximized**:

$$r_{ai} = \frac{x_{ai}}{u_a^+}$$
, for $a = 1, ..., n$ and $i = 1, ..., m$, where $u_a^+ = max(x_{ai})$

Or by the lowest value, u_a^- , if the criterion is to be minimized:

$$r_{ai} = \frac{x_{ai}}{u_a^-}$$
, for $a = 1, ..., n$ and $i = 1, ..., m$, where $u_a^- = min(x_{ai})$

The normalized performance score matrix, r_{ai} , is as follows:

	۲1,00	0,33	1,00	2,00ך
	2,00	0,33	1,00	1,00
	3,00	0,67	0,67	2,00
	2,00	1,00	1,00	2,00
r _{ai} =	= 3,00	1,00	0,33	2,00
	1,00	1,00	0,33	3,00
	3,00	0,67	0,67	2,00
	3,00	0,33	0,33	2,00
	L2,00	0,67	0,67	3,00]

Distances Calculation

The next step is to consider the criteria weights, by multiplying the normalized matrix r_{ai} by their corresponding weights w_i , for each assembly line distinctively:

 $v_{ai} = w_i \times r_{ai}$, for a = 1, ..., n and i = 1, ..., m

For each line, the v_{ai} matrices are presented below:

	г0,50	0,07	0,20	0,20ך		г0,50	0,10	0,10	0,20ך		г0,20	0,10	0,40	0,20ך
	1,00	0,07	0,20	0,10		1,00	0,10	0,10	0,10		0,40	0,10	0,40	0,10
	1,50	0,13	0,13	0,20		1,50	0,20	0,07	0,20		0,60	0,20	0,27	0,20
	1,00	0,20	0,20	0,20		1,00	0,30	0,10	0,20		0,40	0,30	0,40	0,20
$v_{ai,L05C} =$	1,50	0,20	0,07	0,20	$v_{ai,THT2A} =$	1,50	0,30	0,03	0,20	$v_{ai,L35} =$	0,60	0,30	0,13	0,20
,	0,50	0,20	0,07	0,30	-	0,50	0,30	0,03	0,30	,	0,20	0,30	0,13	0,30
	1,50	0,13	0,13	0,20		1,50	0,20	0,07	0,20		0,60	0,20	0,27	0,20
	1,50	0,07	0,07	0,20		1,50	0,10	0,03	0,20		0,60	0,10	0,13	0,20
	L _{1,00}	0,13	0,13	0,30		L _{1,00}	0,20	0,07	0,30		L0.40	0.20	0.27	0.30

Distances Calculation

For each line, the v_{ai} matrices are then used to compare each alternative to an ideal and anti-ideal solution, which are defined by **collecting the best and worst performance on each criterion** of the weighted normalized decision matrices, respectively A^+ and A^- .

 $A^+ = \{v_1^+; ..., v_m^+\}$, for a = 1, ..., n and i = 1, ..., m, where $v_i^+ = max_a(v_{ai})$ if the criterion is to be maximized or $v_i^+ = min_a(v_{ai})$ if the criterion is to be minimized

 $A^- = \{v_1^-; ...; v_m^-\}$, for a = 1, ..., n and i = 1, ..., m, where $v_i^- = min_a(v_{ai})$ if the criterion is to be maximized or $v_i^- = max_a(v_{ai})$ if the criterion is to be minimized

So, for each assembly line the ideal and anti-ideal solutions are:

Ideal Solutions
$A_{L05C}^+ = \{0,50; 0,20; 0,20; 0,10\}$
$A_{THT2A}^+ = \{0,50; 0,30; 0,10; 0,10\}$
$A_{L35}^+ = \{0, 20; 0, 30; 0, 40; 0, 10\}$

 $\frac{\text{Anti-Ideal Solutions}}{A_{L05C}^{-}} = \{1,50; 0,07; 0,07; 0,30\}$ $A_{THT2A}^{-} = \{1,50; 0,10; 0,03; 0,30\}$ $A_{L35}^{-} = \{0,60; 0,10; 0,13; 0,30\}$

Distances Calculation

The fourth step is to calculate the distance of each alternative to the ideal and anti-ideal solutions, given by d_a^+ and d_a^- , respectively:

$$d_a^+ = \sqrt{\sum_i (v_i^+ - v_{ai})^2}$$
 , for $a = 1, ..., n$ and $i = 1, ..., m$

 $d_a^- = \sqrt{\sum_i (v_i^- - v_{ai})^2}$, for a = 1, ..., n and i = 1, ..., m

For each assembly line, the distances of each alternative to the ideal and anti-ideal solutions are:

Distances to the Ideal Solutions	Distances to the Anti-Ideal Solutions
$d^+_{a,L05C} = \{0,17; 0,52; 1,01; 0,51; 1,01; 0,24; 1,01; 1,02; 0,55\}$	$d^{-}_{a,L05C} = \{1,01; 0,55; 0,14; 0,54; 0,17; 1,01; 0,14; 0,10; 0,51\}$
$d^+_{a,THT2A} = \{0,22; 0,54; 1,01; 0,51; 1,01; 0,21; 1,01; 1,03; 0,55\}$	$d_{a,THT2A}^{-} = \{1,01; 0,54; 0,15; 0,55; 0,22; 1,02; 0,15; 0,10; 0,51\}$
$d^+_{a,L35} = \{0,22; 0,28; 0,44; 0,22; 0,49; 0,33; 0,44; 0,53; 0,33\}$	$d_{a,L35}^- = \{0,49; 0,39; 0,19; 0,40; 0,22; 0,45; 0,19; 0,10; 0,26\}$

Ranking Alternatives

The final step involves calculating the **<u>relative closeness coefficient</u>**, *C*_a, of each alternative:

		Line	
Alternative	L05C	THT2A	L35
PTM	0,86	0,81	0,40
UM	0,52	0,50	0,46
ТРМ	0,12	0,13	0,33
ITVM	0,52	0,52	0,52
APM	0,14	0,19	0,34
BWM	0,81	0,84	0,33
AM	0,12	0,13	0,33
IBM	0,09	0,09	0,16
SM	0,48	0,48	0,31

$$C_a = \frac{d_a^+}{d_a^+ + d_a^-}$$
 , for $a = 1, ..., n$

This coefficient's value is always **between 0 and 1**. The **closer to 1**, the closer the alternative is to the ideal solution than the anti-ideal one, so **the more preferred** the alternative is.

TOPSIS can suffer from **bias due to subjective criteria weighting**. To reduce this impact, the **first** and **second** highest-ranked alternative for each line were considered, rather than relying exclusively on the highest-ranked option.

UM is less suited for dynamic systems

ITVM was selected to best match the system's dynamics

Flow-line dynamics and higher accuracy favor BWM over PTM

BWM was chosen for its

superior performance in

terms of accuracy and suitability

BWM discarded due to lack of defined buffers

PTM is selected as it does not rely on buffer information and still provides robust insights

Contribution and Future Work

By integrating systematic decision-making into bottleneck detection, this study provides a replicable framework for industries aiming to improve throughput under different operational constraints;

Future research could apply alternative MCDM methods, such as AHP or VIKOR, to validate findings and compare outcomes.

