Leveraging MCDA for Colorectal Cancer Screening Strategies

Daniel Corrales^{1, 2} David Ríos-Insua¹

¹Instituto de Ciencias Matemáticas (ICMAT - CSIC), España ²Universidad Autónoma de Madrid (UAM), España

May 9, 2025

MCDA for CRC Screening Strategies

May 9, 2025

- 2 Characterizing CRC Risk
- 3 Decision model for CRC screening
- Designing screening incentives through adversarial risk analysis

5 Bibliography

Context I

- Colorectal cancer (CRC) is the third most common cancer worldwide. [WHO, 2023]
- Only around 14% of susceptible EU citizens participate in screening programs.
- Early-onset incidence is rising.
- In 2020, 1.9M new cases and 930,000 associated deaths, worldwide. [Morgan et al., 2023]
- In 2015, its estimated annual costs were approximately 19 billion €. [Henderson et al., 2021]

Goal: Create predictive models and decision support tools for personalised CRC screening

MCDA for CRC Screening Strategies

Characterizing CRC Risk [Corrales et al., 2024] I

- Bayesian Networks (BNs) represent a natural framework to analyse dependence across CRC risk factors
- Data from annual health reviews database enriched through INE datalake. Total of 2M records and 66 variables.
- Kept non-modifiable (e.g. Age) and modifiable (e.g. BMI) risk factors, together with medical conditions (e.g. Hypertension).
- Literature review validated by experts.
- Variables discretized and an intense data cleaning work performed.
- Learn BN structure from expert judgement and data.

$$\begin{aligned} p(\theta_{X|\boldsymbol{u}}) &\sim Dir(\alpha_{x^{1}|\boldsymbol{u}},...,\alpha_{x^{K}|\boldsymbol{u}}) & (\text{Empirical Bayes prior}) \\ p(\theta_{X|\boldsymbol{u}}|D) &\sim Dir(\alpha_{x^{1}|\boldsymbol{u}} + m[\boldsymbol{u},x^{1}],...,\alpha_{x^{K}|\boldsymbol{u}} + m[\boldsymbol{u},x^{K}]) & (\text{Posterior based on data}) \\ \hat{\theta}_{X=x^{i}|\boldsymbol{u}} &= \frac{\alpha_{x^{i}|\boldsymbol{u}} + m[\boldsymbol{u},x^{i}]}{\sum_{j} \alpha_{x^{j}|\boldsymbol{u}} + m[\boldsymbol{u},x^{j}]} & (\text{MAP estimator}) \end{aligned}$$

Resulting Bayesian Network

イロト イヨト イヨト イヨト

3

Use cases

	Age = 5_old_adult -	14.7	
	Diabetes = True -	12.4	
	Smoking = 3_ex_smoker -	5.8	
	Hypertension = True -	5.3	
	Alcohol = high -	4.9	
	SD = 1_short -	3.0	
	Age = 4_adult -	2.8	- 10
	Hyperchol. = True -	2.1	
	BMI = bmi_4_obese -	0.9	
Ē	Sex = W -	0.7	-
aso	BMI = bmi_3_overweight -	0.5	- 5
æ	Smoking = 1_not_smoker -	0.2	
2	SES = 1 -	0.1	
e a	PA = 2.0 -	0.1	- 0
abl	Sex = M -	0.1	
/arı	SES = 2 -	0.0	
Ē	PA = 1.0 -	-0.1	5
Ē	Alcohol = low -	-0.1	
<u>e</u>	SES = 0 -	-0.3	
Ē	SD = 2_normal -	-0.4	
	Diabetes = False -	-0.5	10
	Hypertension = False -	-1.0	
	BMI = bmi_2_normal -	-1.2	
	Hyperchol. = False -	-1.9	15
	SD = 3_excessive -	-2.6	
	BMI = bmi_1_underweight -	-5.4	
	Smoking = 2_smoker -	-6.1	
	Age = 3_young_adult -	-12.2	
	Age = 2_young -	-18.1	
		Influence	

Figure: Risk map

Figure: Influential variables

Corrales & Rios-Insua (ICMAT)

Aims:

- Provide personalised advice for screening
- Screening followed by colonoscopy if positive screening test
- I Focus on short-term information outcomes, costs and comfort.
- Oecision based on maximum expected utility.

Decision model for CRC screening [Corrales et al., 2025] II

8/24

Probability models at chance nodes Distribution of results of screening and colonoscopy based on sensitivity and specificity of screening tools and patient features p(R_S|crc, x), p(R_C|crc, x). Additionally, probability of complications.

	gFOBT	FIT	BldBsd	sDNA	CTC	CC	Colons.
Sensitivity	0.45	0.75	0.66	0.923	0.8	0.87	0.97
Specificity	0.978	0.966	0.91	0.866	0.89	0.92	0.99

Single criterion preferences

- Costs (€) of interventions and complications
- Comfort. Use a constructed attribute [Keeney and Gregory, 2005] based on level of discomfort

co	m	Description	Interventions	
4		The patient does not experience any discomfort	No screening	
- 3	;	The patient experiences a minor discomfort or the test	FIT, gFOBT,	
		implies a small inconvenience: time lost, emotional dif-	sDNA, Blood-	
		ficulty, or slight physical pain.	test	
2	2	The discomfort experienced by the patient is noticeable.	CTC, CC	
		There is a noteworthy emotional aversion and a few mo-		
		ments of physical discomfort.		
1		The discomfort is very significant. The test causes some	Colonoscopy	
		periods of pain resulting in remarkable distress.		

Figure: Comfort constructed attribute

Quantifying the decision model III

 Information v_{info} provided by the screening strategy. Measured in terms of *relative pointwise mutual information*. Intuition: proportion of uncertainty resolved by the screening strategy.

$$v_{info}(crc, R_S, R_C) = \frac{\log\left(\frac{p(crc|R_S)}{p(crc)}\right) + \log\left(\frac{p(crc|R_S, R_C)}{p(crc|R_S)}\right)}{-\sum p(crc)\log p(crc)}$$
(1)

Multiple criteria preference aggregation
 A multicriteria value function aggregation followed by a risk aversion transformation used, where λ_k is a weighting factor that depends on comfort. Assume constant absolute risk-aversion (CARA) and elicit parameters a, b, ρ using the probability equivalent method (PE)

$$egin{aligned} & v(\textit{cost}, \textit{value}, \textit{comf}) = \lambda_k imes \textit{value} - \log_{10}(\textit{cost}) \ & u(\textit{cost}, \textit{value}, \textit{comf}) = a - b imes \exp(-
ho imes v(\textit{cost}, \textit{value}, \textit{comf})) \end{aligned}$$

Quantifying the decision model ${\sf V}$

Comfort	Scr. method	Cost	Info	Preference	Indiff. cost	$\hat{\lambda}_{k}$	λ_k
1	Colonos	1000	0.530		_) - 4.01	$\lambda_1 = 4.01$
1	Synth.	—	0.4	×	300€	$\lambda_1 = 4.01$	
2	CTC	95.41	0.159	×	_	$\lambda_{2} = 4.17$	$\lambda_2 = 4.17$
2	CC	510.24	0.225		180€	$\lambda_2 = 4.17$	
3	gFOBT	12.14	0.129		3€	$\lambda_{-} = 5.04$	
5	FIT	14.34	0.245	×	—	$\lambda_3 = 0.04$	
3	gFOBT	12.14	0.128	×	_	$\lambda_3 = 10.57$	
5	Blood test	125.13	0.121		10€		
2	gFOBT	12.14	0.128	×	_	$\lambda_3 = 16.28$	
0	sDNA	236.88	0.197		170€		$\lambda_1 = 4.01$ $\lambda_2 = 4.17$ $\bar{\lambda}_3 = 6.80$ $\lambda_4 = 7$
3	FIT	14.34	0.244	×	_) - 6.40	$\lambda_3 = 0.00$
5	Blood test	125.13	0.121		1.5€	$\lambda_3 = 0.40$	
2	FIT	14.34	0.244	×	_) - 7.2]
5	sDNA	236.88	0.197		6 €	$\lambda_3 = 1.2$	
2	Blood test	125.13	0.121		80€) - 6.17]
0	sDNA	236.88	0.197	×	_	$\lambda_3 = 0.17$	
4	No scr.	0	0	_	_	_	$\lambda_4 = 7$

Figure: Elicitation of parameters through the probability equivalent method

Individual recommendations. Personalised screening strategy depending on risk.

No_screening	0.13376699
gFOBT	0.11842714
▶ FIT	0.13416683
Blood_based	0.11203061
Stool_DNA	0.13116387
CTC	0.12432938
Colon_capsule	0.10352935

Figure: Best strategy for a male adult, age 44-54, with normal sleep duration, physically active, normal weight, non-smoker, and with low alcohol consumption.

Use cases II

• Assessing the Spanish strategy on screening and designing a national strategy with budget and device constraints

Current Spanish Strategy	Proposed Strategy			
	For patient with features X:			
 If patient >50 years old: Send FIT invitation 	• if $p(CRC X) < \theta_1 \rightarrow No$ screening			
regardless their features.	• if $ heta_1 \leq p(\mathit{CRC} X) < heta_2 ightarrow$			
 Else: No screening. 	FIT			
	• if $p(\textit{CRC} X) \ge heta_2 o sDNA$			
Example: Man under 50 with high risk (due to e.g. high alcohol				
consumption, overweight, exsmoking) would be detected by the				
model as a higher risk patient than a healthy man above 60.				
Results: Extrapolating results in Spain's target population, this				
strategy would detect 134 patients more.				

Use cases III

<u>Benchmarking for new screening devices</u> (relevant for EU ONCOSCREEN project)

May 9, 2025

< 4³ ►

∃ →

	Predicted No CRC	Predicted CRC
No CRC	339472.1 ± 4.0	16.9 ± 4.0
CRC	139.8 ± 4.4	78.3 ± 4.4

Figure: Old strategy. Cost per patient 7.14€. F1 classification score 0.50

	Predicted No CRC	Predicted CRC
No CRC	339458.5 ± 5.4	30.5 ± 5.4
CRC	126.8 ± 3.8	91.2 ± 3.8

Figure: New strategy. Cost per patient 9.85€. F1 classification score 0.54

Ongoing work: Designing screening incentives through adversarial risk analysis I

- Suppose a policy-maker (PM) has chosen a screening strategy e.g. through the previous decision model. This does not mean that patients will be willing to participate in the screening program.
- Context: principal-agent problem. Reframe the usual framework through the Adversarial Risk Analysis framework.
- Modeled as a bi-agent influence diagram, which can be solved as in [González-Ortega et al., 2019].

Ongoing work: Designing screening incentives through adversarial risk analysis II

(a) CRC screening incentive problem as principal-agent case from an ARA perspective (b) Incentive problem from the PM perspective. (c) Incentive problem from C's perspective.

Image: A matrix

Ongoing work: Designing screening incentives through adversarial risk analysis III

Corrales & Rios-Insua (ICMAT)

- We have developed a model for predicting CRC risk.
- This is embedded in a decision model with multiple criteria (cost, comfort, information provided)
- After the decision model is characterized, it can be used for individual recommendations, designing national screening strategies and benchmarking new devices.
- Decision models based on personalised risk approaches can be very relevant for early cancer detection.

Bibliography I

- D. Corrales, A. Santos-Lozano, S. López-Ortiz, A. Lucia, and D. R. Insua. Colorectal cancer risk mapping through bayesian networks. *Computer Methods and Programs in Biomedicine*, 257:108407, 2024.
- D. Corrales, D. R. Insua, and M. J. González. A decision analysis model for colorectal cancer screening. *arXiv preprint arXiv:2502.21210*, 2025.
- J. González-Ortega, D. R. Insua, and J. Cano. Adversarial risk analysis for bi-agent influence diagrams: An algorithmic approach. *European Journal of Operational Research*, 273(3):1085–1096, 2019.
- R. H. Henderson, D. French, T. Maughan, R. Adams, C. Allemani,
 P. Minicozzi, M. P. Coleman, E. McFerran, R. Sullivan, and M. Lawler. The economic burden of colorectal cancer across europe: a population-based cost-of-illness study. *The lancet Gastroenterology & hepatology*, 6(9):709–722, 2021.
- R. L. Keeney and R. S. Gregory. Selecting attributes to measure the achievement of objectives. *Operations Research*, 53(1):1–11, 2005.

Corrales & Rios-Insua (ICMAT)

- E. Morgan, M. Arnold, A. Gini, V. Lorenzoni, C. Cabasag, M. Laversanne, J. Vignat, J. Ferlay, N. Murphy, and F. Bray. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from globocan. *Gut*, 72(2):338–344, 2023.
- WHO. Colorectal cancer, 2023. https://www.who.int/news-room/ fact-sheets/detail/colorectal-cancer.

Thank You!

Feel free to reach out: daniel.corrales@icmat.es

Corrales & Rios-Insua (ICMAT)

MCDA for CRC Screening Strategies

May 9, 2025

24 / 24