

Energy Expenditure and Ergonomic Risk Assessment in the Industry Using TOPSIS

I IBERIAN CONFERENCE ON MCDM/A (IMCDM/A) University of Coimbra, 2025

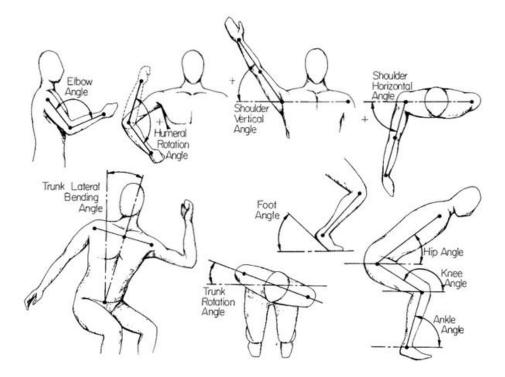
Joana Rafaela Almeida Ana Moura José Luís Oliveira ^{University of Aveiro}

Introduction Ergonomic challenges in the industry

Work-related Musculoskeletal Disorders (WMSDs)

Impact worker health and result in significant organizational costs.

Primary risk factors


- Prolonged hand tool use.
- Mechanical pressure on the upper limbs.
- Repetitive movements.
- Awkward postures.

universidad de aveiro

Assessment challenge

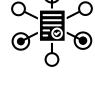
Quantitative methods are needed. The systematic hazard identification is required. Difficult to determine which approach best suits a given context.

Background Ergonomic Assessment Tools

Multiple ergonomic assessment tools

- Each method evaluates specific risk factors.
- Often in isolation, making them difficult to integrate.

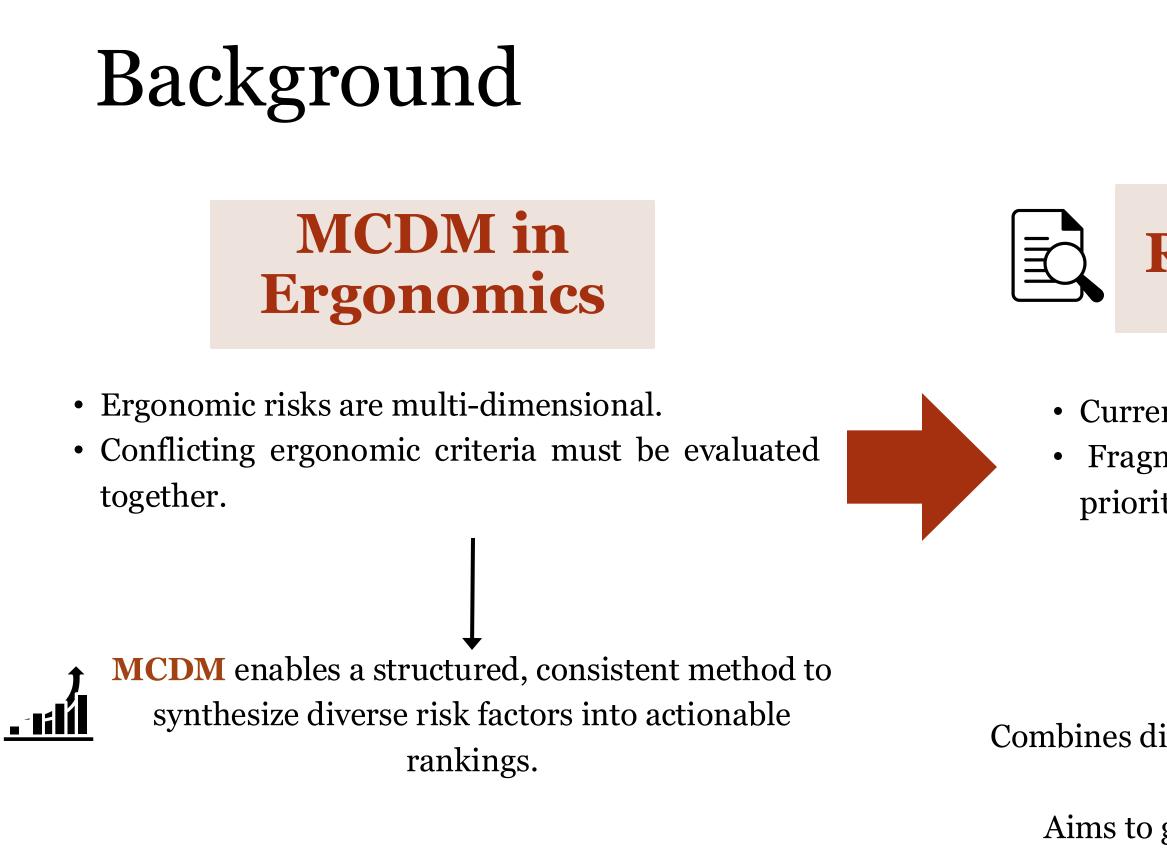
Difficult to prioritize tasks effectively


• When tasks present different types of risks, it becomes challenging to objectively compare them and determine which requires immediate attention.

Need for an integrated data-driven approach

• Combining multiple ergonomic indicators into a single framework supports more informed decision-making on the shop floor.

BOS


	Table
	Method
	NIOSH Lifting Index
	Job Strain Index (JSI)
	Occupational Repetitive
	(OCRA)
	European Assembly W
es	(EAWS)
	Energy Expenditure (EE)
	Ovako Working Posture
	System (OWAS)
	Rapid Upper Limb Ass
	(RULA)
	Rapid Entire Body Ass
	(REBA)
	Quick Exposure Check (QE
	Daily Noise Dosage (DND)
	Copenhagen Psychosocial
	tionnaire (COPSOQ)
	LEST Method

	Lifting	of	Awkward	Repetitive	Psychological
	heavy loads X		postures	work	comfort
				X	
Actions			Х	X	
Vorksheet	Х		X	Х	
	v			V	
Analysis	Х		v	Х	
Analysis			Х		
ssessment			Х		
ssessment					
ssessment			Х		
QEC)			Х	Х	
D)					Х
al Ques-					Х
					Х

1: Mapping of Ergonomic Assessment Methods to evaluated criteria.

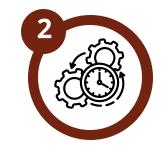
BOSC

Research gap

Current tools isolate individual risk factors.
Fragmented assessments → No holistic task prioritization

This study:

Combines different indicators to support both ergonomics and efficiency.


Aims to guide task redesign and worker allocation.

Background Research Objectives

Combine complementary ergonomic risk indicators

- Postural strain (REBA)
- Metabolic energy expenditure (Garg et al.)
- Task duration (MTM standard)

universidad

Apply the TOPSIS method as a decisionsupport tool

- Rank tasks based on proximity to an "ideal" ergonomic profile
- Include both physical and time-efficiency factors

BOSC


Integrate diverse measures into a unified model

- Normalize and harmonize different types of ergonomic data
- Compare common industrial manual tasks

Improve task prioritization and worker allocation

- Identify high-risk tasks that require ergonomic intervention
- Support more balanced task assignments to reduce WMSDs

Methodology Framework steps

Methodology MTM (Methods-Time Measurement)

Elemental motion decomposition - MTM

- Tasks are decomposed into elemental motions
- For precision analysis, accurate time and ergonomic assessment are performed per micromovement.

Practical implications

- Allow to compare tasks by motion effort and time requirement.
- Provides a foundation for metabolic cost estimation and productivity analysis.

BOSC

		Motion Lengt	h (cm)	≤ 20	> 20 to ≤ 50	> 50 to ≤ 80	Moti	Motion Length (cm)≤ 20Distance Class1		> 20 to ≤ 50	> 50 to ≤ 8		
		Distance C	lass	1	2	3	Dis			2	3		
										_			
	Get and Pl	ace	Code	1	2	3	Handle Tool	Code	1	2	3		
	Case of get	Case of place	Coue	TMU	TMU	TMU	Handle Tool	Coue	TMU	TMU	TMU		
		approx.	AA	20	35	50	approx.	HA	25	45	65		
	easy	loose	AB	30	45	60	loose	HB	40	60	75		
< 1 ka		tight	AC	40	55	70	tight	HC	50	70	85		
≤1kg		approx.	AD	20	45	60							
	difficult	loose	AE	30	55	70	Operate	Code	1	2	3		
		tight	AF	40	65	80	simple	BA	10	25	40		
	handful	approx.	AG	40	65	80	compound	BB	30	45	60		
		approx.	AH	25	45	55							
>1kgto ≤8kg		loose	AJ	40	65	75	Motion Cycles	Code	1	2	3		
		tight	AK	50	75	85	one motion	ZA	5	15	20		
		approx.	AL	80	105	115	motion sequence	ZB	10	30	40		
> 8 kg	to ≤22 kg	loose	AM	95	120	130	re-position and one motio	n ZC	30	45	55		
		tight	AN	120	145	160	tighten or loosen	ZD	20				
	Dises	Orde				1	2	3	Body Motions	Code		TMU	
Place			Code	TMU	TMU	TMU	walk / m	KA		25			
approx.			PA	10	20	25	bend, stoop, kneel	КВ	60				
loose			PB	20	30	35	sit and stand	КС		110			
	tight		PC	30	40	45							
							Visual Control	VA		15			

		Motion Lengt	h (cm)	≤ 20	> 20 to ≤ 50	> 50 to ≤ 80	Mo	otion Length (cm)	≤ 20	> 20 to ≤ 50	> 50 to ≤ 8	
		Distance C	lass	1	2	3		Distance Class	1	2	3	
	Get and Pl	ace	Code	1	2	3	Handle Tool	Code	1	2	3	
	Case of get	Case of place	Coue	TMU	TMU	TMU	Hanule Tool	Coue	TMU	TMU	TMU	
		approx.	AA	20	35	50	approx.	HA	25	45	65	
	easy	loose	AB	30	45	60	loose	HB	40	60	75	
~ 1 1.0		tight	AC	40	55	70	tight	HC	50	70	85	
≤1 kg		approx.	AD	20	45	60						
	difficult	loose	AE	30	55	70	Operate	Code	1	2	3	
		tight	AF	40	65	80	simple	BA	10	25	40	
	handful	approx.	AG	40	65	80	compound	BB	30	45	60	
		approx.	AH	25	45	55						
$> 1 \text{ kg to } \le 8 \text{ kg}$		loose	AJ	40	65	75	Motion Cycles	Code	1	2	3	
		tight	AK	50	75	85	one motion	ZA	5	15	20	
		approx.	AL	80	105	115	motion sequence	ZB	10	30	40	
> 8 kg	to ≤22 kg	loose	AM	95	120	130	re-position and one mo	otion ZC	30	45	55	
		tight	AN	120	145	160	tighten or loosen	ZD	20			
	Dises		Orde	1	2	3	Body Motions	Code		TMU		
Place		Place Code		TMU	TMU	TMU	walk / m	KA 25		25		
approx.			PA	10	20	25	bend, stoop, kneel	КВ				
	loose		PB	20	30	35	sit and stand	КС		110		
	tight		PC	30	40	45						
					•		Visual Control	VA		15		

MTM-UAS - Standard Times for Basic Operations (LP Montagetechnik, 2025)

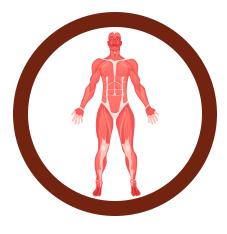
....

Methodology Energy Expenditure

- Movement Type (e.g., arm lift, carrying)
- Body Weight (kg)
- Load Handled (kg)
- Others (gender, average pushing/pulling force, walking speed, distances, heights...)

Output

- Energy expenditure (kcal per motion)
- Enables objective comparison of task demands (in terms of fatigue)


BOSC

Predictiveequationsfornetmetabolic cost of tasks:

- Introduced by Garg et al., 1978
- One of the most common methods to estimate energy expenditure in line balancing ergonomics

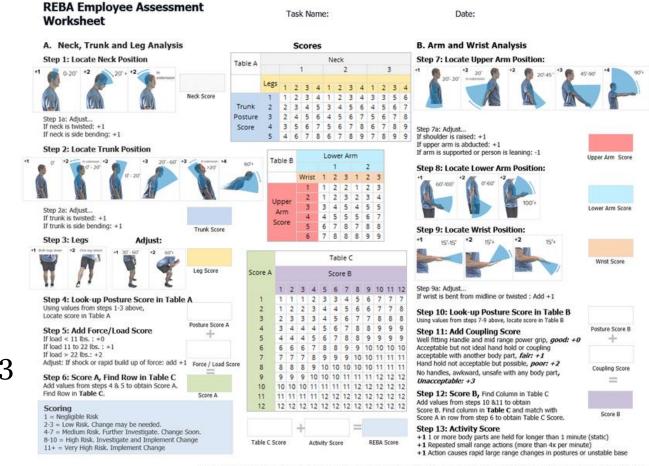
Methodology Postural Risk – REBA (Rapid Entire Body Assessment)

Body Segmentation

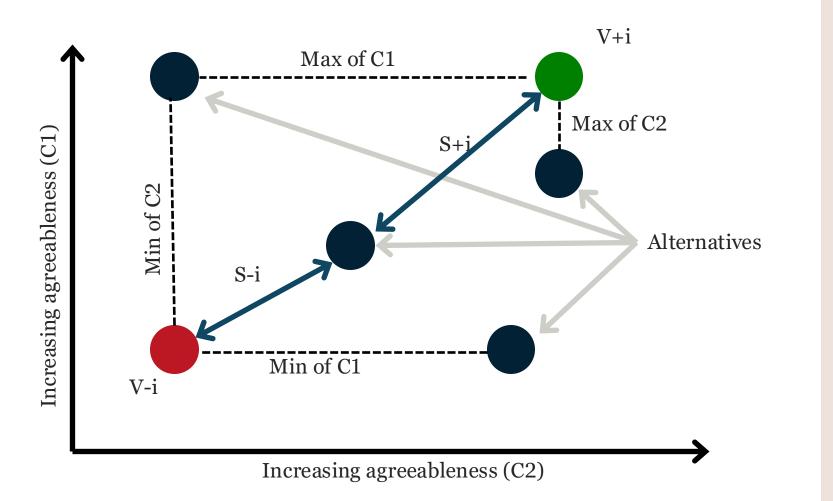
- Evaluates neck, trunk, arms, legs separately
- Sensitive to asymmetries, loads, and joint angles

REBA Scores

- Reflect musculoskeletal strain levels
- Higher score = higher ergonomic risk


- 3 evaluations per task (e.g., 3 different workers or task variants)
- Increases consistency and accounts for individual variability

BOSCH



Original Worksheet Developed by Dr. Alan Hedge. Based on Technical note: Rapid Entire Body Assessment (REBA), Hignett, McAtamney, Applied Ergonomics 31 (2000) 201-205

9

Methodology TOPSIS - Technique for Order Preference by Similarity to Ideal Solution

Ranks alternatives based on proximity to:

- Ideal solution
- Negative-ideal solution

Create a decision matrix

Define the alternatives and criteria.

Normalize Matrix

Transform values to comparable units.

Apply criteria weights

Assign importance to each factor.

Calculate similarity

Measure distance to ideal solution. Rank tasks by risk

Results Raw Ergonomic Metrics

Fundação para a Ciência e a Tecnologia

			Table 2: Task-wise energy exp	penditure and ergonon	nic risk evaluation.	
		Task ID	Movement	EE (kcal)	Time (sec)	REBA score
		T1		0.950	10.29	4
		T2	Trolley movement	0.457	8.64	3
	1) Create a decision matrix	T3		0.601	9.54	3
	I) CI cute a decision matrix	T4		0.362	Time (sec) REBA s 10.29 4 8.64 3	5
		T5	Riveting	0.132		5
	Define the alternatives and criteria.	T6		0.348		7
		T7		0.111	8.28	2
		T8	Assemble brackets	0.135	6.12	2
		T9		0.127	5.04	5
		T10	Laying cables	0.310	16.38	5
Altornat	ives: Manual tasks performed on the assembly line (e.g.,	T11		0.360	18.90	5
		T12		0.310	5.22	1
riveting, s	viveting, screwing, assemble brackets, cable laying, etc.)			0.481	28.51	6
		T14	Screwing	0.326	12.52	6
		T15		0.726	14.88	2
Criteria:		T16		0.269	8.64	1
	anona (nactural strain) — minimiza	T17	Install seals	0.255	12.42	1
• KEDA	score (postural strain) \rightarrow minimize	T18		0.122	4.32	1
• Energ	y expenditure (metabolic cost in kcal) \rightarrow minimize	T19		0.319	5.04	4
0			Hand threading	0.122	6.66	3
• Cycle	time using MTM (in seconds) \rightarrow minimize	T21		0.356	11.34	3
		T22		0.752	14.22	6
		T23	Packaging	0.361	10.26	4
		T24		0.504	6.48	3

govcopp universidade 's aveiro

Table 2: Task-wise energy expenditure and ergonomic risk evaluation.

11

Results Weighted Normalized Matrix

2) Normalize Matrix

Transform values to comparable units.

3) Apply criteria weights

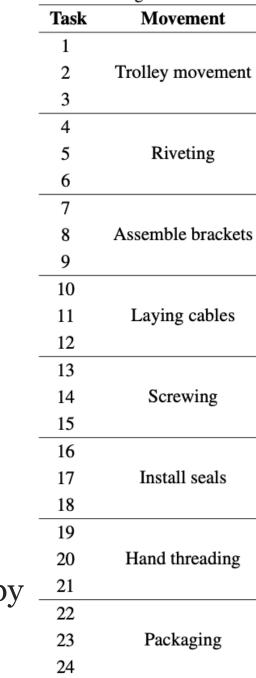
Assign importance to each factor.

(H)

4) Calculate similarity

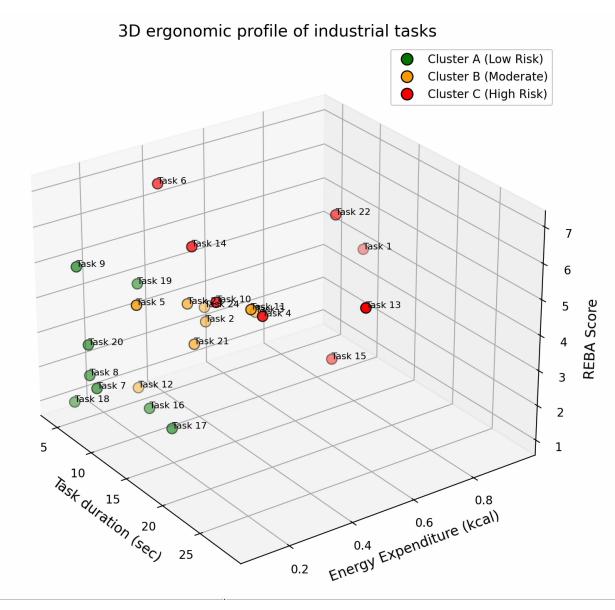
Fundação

para a Ciência


Measure distance to ideal solution. Rank tasks by risk level.

BOSC

govcopp



	EE	Time	REBA	S _{i+}	S _i .	Pi	Rank
	0.152	0.057	0.067	0.148	0.112	0.432	22
	0.073	0.047	0.051	0.069	0.151	0.685	10
	0.096	0.052	0.051	0.090	0.136	0.601	16
	0.058	0.112	0.084	0.118	0.110	0.482	21
	0.021	0.073	0.084	0.084	0.159	0.656	13
	0.056	0.038	0.118	0.109	0.153	0.584	17
	0.018	0.045	0.034	0.028	0.194	0.876	3
5	0.022	0.034	0.034	0.020	0.198	0.909	2
	0.020	0.028	0.084	0.068	0.188	0.735	8
	0.049	0.090	0.084	0.100	0.128	0.562	19
	0.057	0.104	0.017	0.089	0.149	0.625	15
	0.050	0.029	0.101	0.090	0.165	0.646	14
	0.077	0.157	0.101	0.168	0.077	0.314	24
	0.052	0.069	0.101	0.102	0.134	0.569	18
	0.116	0.082	0.034	0.116	0.118	0.506	20
	0.043	0.047	0.017	0.035	0.185	0.842	4
	0.041	0.068	0.017	0.050	0.175	0.777	6
	0.020	0.024	0.017	0.002	0.213	0.991	1
	0.051	0.028	0.067	0.061	0.172	0.739	7
	0.020	0.037	0.051	0.036	0.191	0.841	5
	0.057	0.062	0.051	0.065	0.150	0.699	9
	0.121	0.078	0.101	0.144	0.086	0.375	23
	0.058	0.056	0.067	0.072	0.147	0.670	12
	0.081	0.036	0.051	0.073	0.156	0.683	11

Table 3: Weighted Normalised Matrix of tasks considering energy expenditure, task duration, and ergonomic risk.

Results **Cluster Analysis**

Tasks grouped into 3 clusters:

Fundação para a Ciência

Tecnologia

universidade

de aveiro

Cluster A: Low risk

Tasks with short durations, low energy expenditure and low **REBA** scores:

- Installing seals
- Assembling brackets
- Hand threading

Cluster B: Moderate risk

Tasks with medium durations, energy expenditure and REBA scores: • Trolley movement • laying cables • packaging

govcopp

IEETA

BOSC

Cluster C: High risk

Tasks with longer durations, high energy expenditure and **REBA** scores:

- Riveting
- Screwing

Results Sensitive analysis

Assessing the impact of different priorities on task ranking

Criteria weighting tests

- Evaluate how changing the criteria's importance (weights) posture, energy, and time affects task rankings.
- Identify robust tasks (ranked consistently high/low)

Robust Rankings

Task priorities remained stable across weight variations.

(H)

BOSC

		neutritup	of lusic runn	ings bused	on unicicile s	centarios		
T1 -	22	18	23	22	24	18	19	
T2 -	10	9	12	14	17	10	9	
ТЗ -	16	12	18	18	20	15	12	
T4 -	21	23	19	20	19	23	21	
T5 -	13	17	11	10	8	16	16	- 20
T6 -	17	19	20	13	16	14	22	
T7 -	3	4	3	4	3	4	4	
Т8 -	2	2	2	2	2	2	3	
) — т9-	8	11	9	5	6	7	15	
T10 -	19	21	15	17	14	20	18	- 15
T11 -	15	15	7	19	13	21	7	
🖞 T12 -	14	14	16	8	11	9	17	ž
SY T12 -	24	24	22	24	21	24	24	Rank
T14 -	18	20	17	16	15	17	20	
T15 -	20	16	21	21	22	19	13	- 10
T16 -	4	3	4	6	5	5	2	
T17 -	6	6	5	9	7	11	5	
T18 -	1	1	1	1	1	1	1	
T19 -	7	8	10	7	9	6	11	
T20 -	5	5	6	3	4	3	6	- 5
T21 -	9	10	8	12	10	13	8	5
T22 -	23	22	24	23	23	22	23	
T23 -	12	13	13	11	12	12	14	
T24 -	11	7	14	15	18	8	10	
	si	s2	s3	s4	s5	S6	s7	-
				Scenarios				

Heatmap of Task rankings based on different scenarios

14

Conclusion **Practical applications**

Proposed methodology

A new framework evaluates and ranks manual assembly tasks based on:

- Task duration (MTM time)
- Energy expenditure (metabolic cost)
- Postural risk (REBA score)

Workplace design improvements

Prioritize redesign efforts for high-risk tasks. interventions Target needed most.

Strategic task allocation

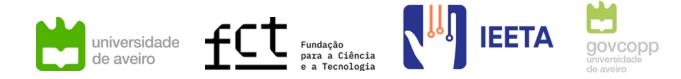
Match tasks to physical capabilities.

Final output: a ranked list of tasks guiding ergonomic decision-making.

BOS

where

Job rotation optimization


Structure rotations based on rankings. Balance risk metabolic and postural loads.

cumulative Prevent strain through appropriate scheduling.

- Assign workers based on ergonomic profiles.
- Reduce injury risk through informed placement decisions.

Energy Expenditure and Ergonomic Risk Assessment in Industry Using TOPSIS

I IBERIAN CONFERENCE ON MCDM/A (IMCDM/A) University of Coimbra, 2025

Joana Rafaela Almeida Ana Moura José Luís Oliveira ^{University of Aveiro}