

João Pedro Medina Monteiro **URBAN FORM AND FUNCTION A MULTI-CRITERIA DECISION ANALYSIS APPROACH**

Institute for Systems Engineering and Computers at Coimbra

UNIVERSIDADE Đ **COIMBRA**

1 2

9 0

Introduction

Cities play an immensurable role in our society

Cities are complex systems, places of increasing population concentration, wealth generation and offer social and economic opportunities but also spend large quantities of energy and produce large amounts of pollution

The way cities are planned and built directly impacts the quality of life of billions of people

Introduction

The form and function define a city

The role of city planners:

Create solutions to not only solve the problems of today, but also the problems of tomorrow...

... towards a more sustainable, resilient, and equitable urban environment

Urban planning does not seek to attain the optimum solution '**irgendwie**, **irgendwo**, **irgendwann**' (somehow, somewhere, sometime)

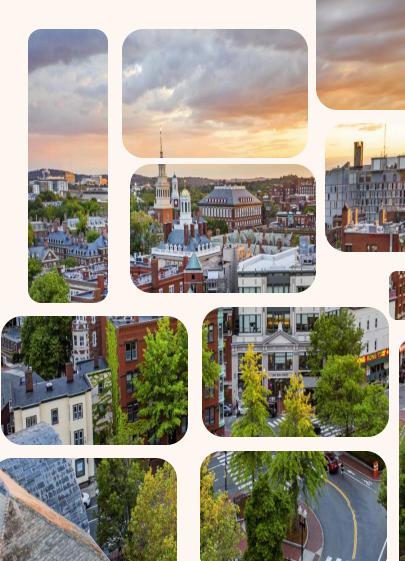
Introduction

Complex, as the obstacles inhibiting efforts to achieve solutions are diverse; problem-solving occurs under uncertainty in changing environments

Ill-defined, as preferences structure, relevant criteria for effectiveness, solution paths, existing reality and goals may be unclear in usually multidisciplinary problems

Important but non-immediate, as unnecessary to find an instant solution being preferable to follow a systematic approach in the analysis

Literature Gap


Urban studies have long been an important research topic

Modelling cities and studying their spatial layout has mostly been done by focusing on a single urban layout or benchmarking indicator

Comparative studies between different city concepts were performed almost exclusively in a qualitative way

Key goal: provide additional knowledge and tools to quantitatively analyze, compare, and benchmark different cities layouts

- Urban regeneration projects
- City expansions
- New cities

Three main objectives:

- Development of quantitative indicators
- (2)
- Benchmark real and ideal cities (individual indicators)

Multicriteria Comparative Analysis

) Creation and development of quantitative indicators

• Accessibility

Accessibility is a wide-ranging concept, directly related to urban layout, transport planning, land use, socioeconomic factors and environmental goals

Interpretation: average distance from origins to destinations, weighted by destination attractiveness and by choice factor $1 - \sum w_i L_{i} d_{i}^k$

$$A_{i} = \frac{1}{\sum_{j} w_{j}} \sum_{jk} \frac{w_{j} L_{kj} d_{ij}}{\sum_{k} L_{kj}},$$

where

i: 1, ..., I number of origins;

j: 1, ..., J number of facility types (includes jobs);

k: 1, ..., K number of closest facilities (when it applies), and in this thesis, K = 3;

A_i: accessibility score of origin i;

 d_{ij}^k : network distance from origin i to the k-th closest facility of type j (or job zone centroid).

w_j: weight of facility type j (destination attractiveness);

 $L_{kj}:$ freedom of choice factor for the k-th closest facility of type j; $L_{kj} > L_{k+1,j}.$

Destination type	Weight	Choice type	Extended trip?
Post offices	1	Closest	Yes
Sports facilities	1	k-closest	Yes
Cultural organizations	1	k-closest	No
Higher education institutions	1	k-closest	No
Elderly care centers	1	k-closest	No
Churches	1	k-closest	No
High schools	2	k-closest	No
Shopping centers	2	k-closest	Yes
Entertainment sites	2	k-closest	No
Primary healthcare services	2	Closest	No
Pharmacies	2	Closest	Yes
Restaurants	2	k-closest	No
Parks and green areas	2	Closest	No
Kindergartens	3	Closest	Yes
Primary schools	3	Closest	Yes
Middle schools	3	Closest	No
Grocery stores	3	k-closest	Yes
Supermarkets	3	k-closest	Yes
Bakeries and pastry shops	3	k-closest	Yes
Jobs	22	Job zone analysis	No

) Creation and development of quantitative indicators

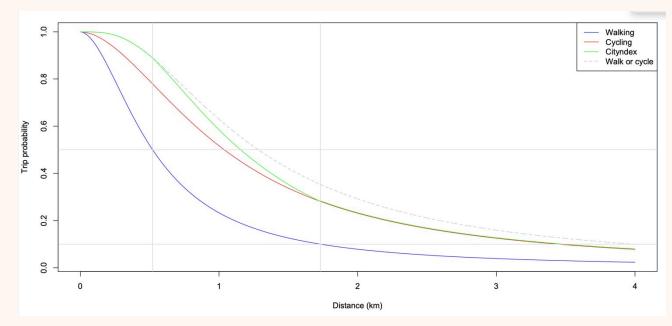
- Accessibility
- Active modal share
- Active transport, such as walking or cycling, promotes affordable, equitable, inclusive means of transport
- Determined by transforming trip distances onto active trip probabilities using log-logistic distributions

$$M_i = \frac{1}{\sum_j w_j} \sum_{jk} \frac{w_j L_{kj} p_{Aij}^k}{\sum_k L_{kj}},$$

where

i: 1, ..., I number of origins;

j: 1, ..., J number of facility types (includes jobs);


k: 1, ..., K number of closest facilities (when it applies), and in this thesis, K = 3; A_i: accessibility score of origin i;

 d_{ij}^k : network distance from origin i to the k-th closest facility of type j (or job zone centroid).

 w_j : weight of facility type j (destination attractiveness);

 L_{kj} : freedom of choice factor for the k-th closest facility of type j; $L_{kj} > L_{k+1,j}$.

Active modal share probability based on trip distance

Creation and development of quantitative indicators

• Accessibility

Transport energy consumption

Active modal share

Trips not made by active mode require motorized transport, which in turn consumes energy and typically produces GHG emissions

In Coimbra, motorized trips resort almost totally to fossil fuels, with a modal split of 70% for private cars and 30% for public transport

$$E_{i} = \frac{1}{\sum_{j} w_{j}} \sum_{ik} \frac{w_{j} L_{kj} (1 - p_{Aij}^{k}) (f_{car} F_{car} + f_{pub} F_{pub}) (d_{ijk}^{\rightarrow} + d_{ijk}^{\leftarrow})}{\sum_{k} L_{kj}},$$

where

- *E_i*: average fuel consumption of accessibility-related trips originating in *i*;
- $f_{\rm car}$: fraction of motorised trips made using the private car;
- $f_{\rm pub}:$ fraction of motorised trips made using public transport;
- *F*_{car}: private car average fuel economy (MJ/passenger.km);
- F_{pub} : public transportation average fuel economy (MJ/passenger.km);
- $d_{ijk}^{\rightarrow}, d_{ijk}^{\leftarrow}$: one-way distances from origin *i*, respectively, towards/away the *k*-th closest destination of type *j*.

• Accessibility

Transport energy consumption

Active modal share

Road network directness

Although for most transport related analysis network distances are preferred to Euclidean distances, the latter may be used as a reference for network performance

Route directness, is the ratio of the shortest distance between two points on a network, to the Euclidean distance between the same points

Directness is permeability, a measure of the extent to which urban form facilitates (or restricts) movement

Accessibility •

Active modal share

• Transport energy consumption

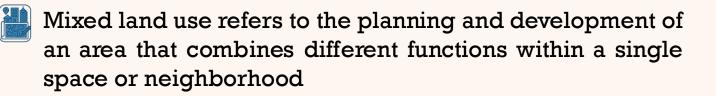
Road network directness

Pleasantness

- Living in an urban environment provides citizens with a lot of benefits but the urban landscape might not coincide with what people consider as a pleasant physical environment
- This indicator, quantitatively evaluates the human perception of the built environment
- Based on a statistical model (CLMM) with geometric and land use elements as explanatory variables. Calibrated with over +1300 worldwide survey responses

Measured city square units on a Likert scale 1-5

	Geometric and land use	Geometric and land use elements considered			
Variable	Definition	Measurement Unit	Scale		
Green area	The publicly available green areas in the study unit	Percentage (%)	0–5 6–25 26–60 >61		

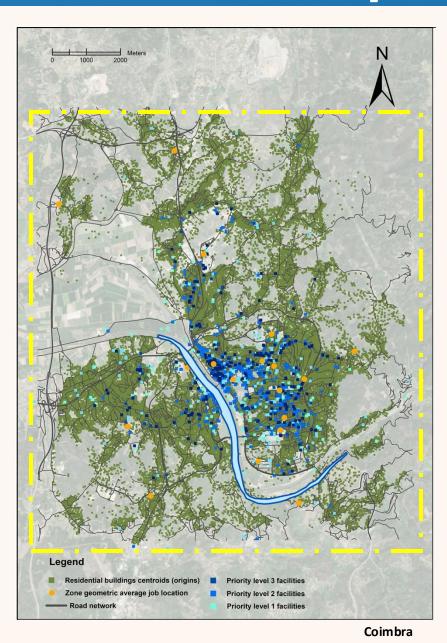

Variable	Definition	Measurement Unit	Scale	Level
Green area	The publicly available green areas in the study unit	Percentage (%)	0–5 6–25 26–60 >61	None Small Medium High
Street width	Average street width, including cycle lanes, parking space and sidewalks	0-8 9-18 >19		Narrow Wide Very wide
Number of floors	Average floor number of all buildings in the study unit	Integer	1–2 3–5 6–11 12–37 >38	House Short Medium Tall Skyscraper
Building distance	Average building side setbacks	Meters (m)	0 1–14 >15	Compact Spaced Sprawled
Green private area	Average private green area	Square meters (m ²)	0–10 >11	Not relevant Backyard

10

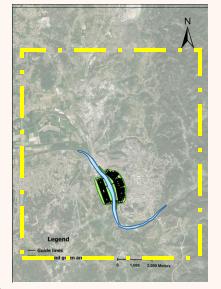
- Accessibility
- Active modal share

- Transport energy consumption
- Road network directness

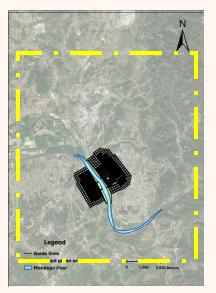
- Pleasantness
- Mix land use



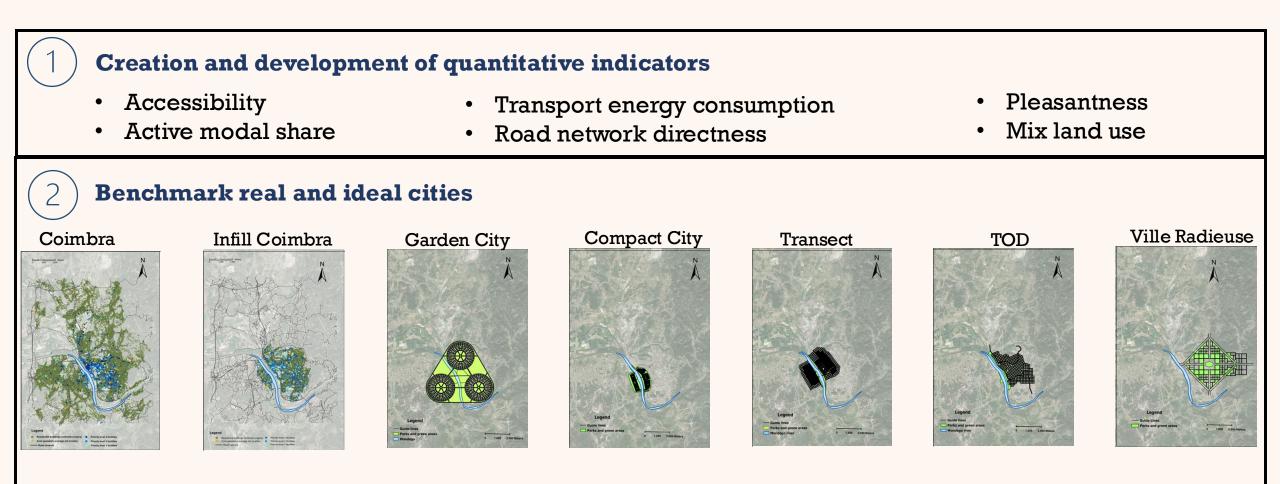
- Mix land use leads to proximity life, urban vibrancy, environmental quality, and comfort – Vibrant, busy streets with people circulating all the time, creating a sense of belonging and of safety
- Measured based on the number of different functions present in a single square unit. 8 different types of land uses

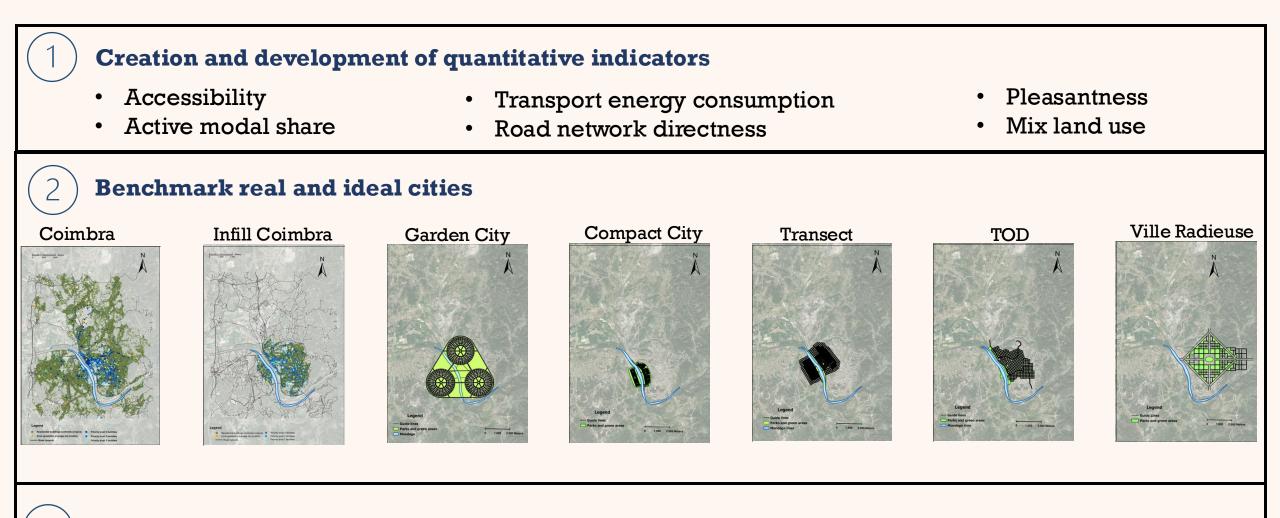

Real and Ideal City Models - Alternatives

N A Degend Deside Lines Desig and green sease


Ville Radieuse

TOD




Transect Planning

G

Garden City

12

Development of a Multicriteria Comparative Analysis: Combined Spatial City Index (CSCI)

MULTICRITERIA MATRIX:

Table 2: Initial multicriteria matrix

Concepts / Criteria	Accessibility (m)	Active modal share (%)	Transport energy consumption (MJ/passtrip)	Road network directness (≥1)		Pleasantness (1-5)
Transect Planning	649	85.1	1.06	1.29	6.4	2.9
Compact City Theory	572	87.8	0.85	1.26	7.3	2.3
TOD	623	85.8	0.87	1.22	6.0	2.5
Garden City	1487	62.3	5.34	1.26	3.9	3.6
Ville Radieuse	1230	66.6	3.68	1.28	4.3	2.9
Infill Coimbra	1602	59.1	5.75	1.58	3.7	2.4
Real Coimbra	2578	42.6	10.88	1.34	2.6	2.7
Preference direction	Min	Max	Min	Min	Max	Max

Three of the criteria are **highly correlated**. If the three were considered, a bias would be created towards accessibility

Sensitive analysis: combining the three into one; consider only one criteria of the three

Accessibility, the most basic of the three, is taken into consideration

MULTICRITERIA MATRIX:

Concepts / Criteria	Accessibility (m)	Road network directness (≥1)	Mix land use (1-8)	Pleasantness (1-5)	
Transect Planning	649	1.29	6.4	2.9	
Compact City Theory	572	1.26	7.3	2.3	
TOD	623	1.22	6.0	2.5	
Garden City	1487	1.26	3.9	3.6	
Ville Radieuse	1230	1.28	4.3	2.9	
Infill Coimbra	1602	1.58	3.7	2.4	
Real Coimbra	2578	1.34	2.6	2.7	
Preference direction	Min	Min	Max	Max	

MCDM: TOPSIS

Rather than selecting a particular set of weights (or using AHP), it was more elucidating to explore the weight space: each criteria weight took the value 1 or 2 and all the possible combinations were evaluated

Weight sets	Waccess	W _{direct}	Wpleasnt	w _{mix}
Set 1	1/4	1/4	1/4	1/4
Set 2	2/5	1/5	1/5	1/5
Set 3	1/5	2/5	1/5	1/5
Set 4	1/5	1/5	2/5	1/5
Set 5	1/5	1/5	1/5	2/5
Set 6	1/3	1/3	1/6	1/6
Set 7	1/3	1/6	1/3	1/6
Set 8	1/3	1/6	1/6	1/3
Set 9	1/6	1/3	1/3	1/6
Set 10	1/6	1/3	1/6	1/3
Set 11	1/6	1/6	1/3	1/3
Set 12	2/7	2/7	2/7	1/7
Set 13	2/7	2/7	1/7	2/7
Set 14	2/7	1/7	2/7	2/7
Set 15	1/7	2/7	2/7	2/7

Multicriteria Analysis

MULTICRITERIA RESULTS:

Concepts / Criteria	Accessibility (m)	Road network directness (≥1)		Pleasantness (1-5)	TOPSIS Ranking Av.	
Transect Planning	649	1.29	6.4	2.9	1.40	Best
Compact City Theory	572	1.26	7.3	2.3	1.60	
TOD	623	1.22	6.0	2.5	3.00	
Garden City	1487	1.26	3.9	3.6	4.40	
Ville Radieuse	1230	1.28	4.3	2.9	4.60	
Infill Coimbra	1602	1.58	3.7	2.4	6.20	
Real Coimbra	2578	1.34	2.6	2.7	6.80	Worst
Preference direction	Min	Min	Max	Max		

The more compact layouts come out on top of the quantitative analysis

e e S S S

Pleasantness-oriented group tries to combine efficiency with greener and more pleasant urban environments

ଞ୍ଚୁତ୍

The Infill proves to be an overall improved version of the real layout, but still considerably far from planned layouts

The Coimbra comes last, proving it has clear problems of inefficiency due to urban sprawl

Conclusions

Compact layouts offer tangible advantages over both the real and other layouts which offer a compromise between accessibility and pleasantness

Results help the decision-making process on

new policies, urban regeneration actions, infrastructure interventions, and planning strategies for city expansions

> Irgendwie, Irgendwo, Irgendwann

Transect Planning moo

Towards making better choices and achieve a more sustainable future for our cities

G

0

Q

Q

 φ

HI

φ

Q

φ

 (φ)

Q

 $\varphi_{\widehat{o}}$

Q

Q

· P P

 Θ

Q

Research outputs

OBRIGAD O

JOÃO PEDRO MEDINA MONTEIRO

PhD. Spatial Planning, MSc. Civil Engineering Invited Associated Professor @ University of Coimbra Invited Associated Professor @ Polytechnic University of Coimbra Integrated Researcher @ INESCC Collaborator Research @ CITTA Email: jpmmonteiro@uc.pt Number: +351 912 388 422

UNIVERSIDADE D COIMBRA