Ordinal Rank-based Preference Elicitation Model For Assigning Weights to Decision Criteria

Dr.-Ing. Milad Zamanifar

Zamanifar@posteo.de

Ing. Gregorio Suriano

09.05.2025- Coimbra

Preference among criteria: A dating example

Objective:

Maximizing the chance of a healthy partnership that exceeds 5 years

Preference on Selection Criteria:

1) Mental health > 2) Altruism > 3) Physics & Look > 4) Intellect

Ordinal Preference Elicitation

1) Mental health > 2) Kindness > 3) Physics & Look > 4) Intellect

- Mental health

- Altruism

- Physics & Look

- Intellect

- Mental health

- Altruism

- Physics & Look

- Intellect

- Mental health

- Altruism

- Physics & Look

- Intellect

- Mental health

- Altruism - Physics & Look - Intellect

Zonning urban areas for disaster Social Vulnerability

Base Social Vulnerability Indicators (percentages)	2 nd Order	3rd Order
 Single parent households with children/Total Households Population 5 or below/Total Population 	Potential Child care Needs	
 Population 65 or above/Total Population Population 65 or above & below poverty/Pop. 65 or above 	Potential Elder Care Needs	
 Workers using public transportation/Civilian pop. 16+ and employed Occupied housing units without a vehicle/Occupied housing units (HUs) 	Potential Trans. needs	
 Occupied Housing units/Total housing units Persons in renter occupied housing units/Total occupied housing units Non-white population/Total population Population in group quarters/Total population Housing units built 20 years ago/Total housing Units Mobile Homes/Total housing units Persons in poverty/Total population 	Potential Housing Needs (Temporary Shelter and housing recovery)	Socially Vulnerable Hotspot
 Occupied housing units without a telephone/Total occupied HUs Population above 25 with less than high school/Total pop above 25 Population 16+ in labor force and unemployed/Pop in Labor force 16+ Population above 5 that speak English not well or not at all/Pop > 5 	Potential Civic Capacity needs	

——Coal ——Geothermal ——Hydro ——Natural Gas ——Solar PV ——Wind (onshore)

A Comparative Analysis of Precise Methods

42 different models

Şahin 2020

Which one is more?

Can you understand the quantity?

Incan *quipu* knots (2600 BCE)

Which variable has the higher share?

What do they all have in common?

Did you need numbers to understand the relative magnitude?

Spatial-numerical association & Intraparietal Sulcus (IPS)

- Human cognition does not naturally express preferences with numbers.
- IPS: Responsible for visuo-spatial function: Activated to understand numbers!
- Also to count: The exact part of the brain responsible for counting on fingers
- Humans tend to mentally represent numbers along a horizontal line
- We have a mental image of numbers in the sense of distance: We don't count, WE SEE quantities!

1- Is our preference a rational choice?2- Does expressing it in numbers make it less subjective?

Gut-Brain Axis

Cognitive biases

Han et al., 2019

Imprecise-surrogate weight allocation approach

- Doesn't force DMs to express the exact numerical value or verbal representation of preference beyond their cognitive capacity
- DMs are both more confident and comfortable with ranking criteria than assigning numerical values or verbal scale (Barfod and Leleur (2014); Danielson and Ekenberg, 2016))
- Operates based on minimal data

1. They **reduce cognitive burden** (more natural)

2. They are **more robust under limited/inconsistent data**.

3. They avoid false precision.

Rank order logarithm (ROL)

Rank sum (RS)

Gaps of existing methods

- 1- Nonlinearity and cardinality
- 2- Equally important criteria
- 3- Marginalized lower criteria problem
- 4- Equalized weights problem
- 5- Flexible for DM with uncertainty of decision environment

Approximations for criteria weights given by used different formulas, in ca of n=2,..., 7 criteria

Number		Rank order	ring methods	
of criteria	Centroid weight	Reciprocal	Rank Sum weight	Equal weight
	(ROC)	weight (<i>RR</i>)	(<i>RS</i>)	(<i>EW</i>)
n=2	$w_1 = 0.75$	$w_1 = 0.67$	$w_1 = 067$	$w_1 = 1/2$
	$w_2 = 0.25$	$w_2 = 0.33$	$w_2 = 0.33$	$w_2 = 1/2$
n=3	<i>w</i> ₁ =0.62	$w_1 = 0.55$	$w_1 = 0.50$	$w_1 = 1/3$
	$w_2 = 0.28$	$w_2 = 0.027$	$w_2 = 0.33$	$w_2 = 1/3$
	<i>w</i> ₃ =0.12	$w_3 = 0.18$	$w_3 = 0.17$	$w_3 = 1/3$
n=4	$w_1 = 0.52$	$w_1 = 0.48$	$w_1 = 0.40$	$w_1 = 1/4$
	$w_2 = 0.27$	$w_2 = 0.24$	$w_2 = 0.30$	$w_2 = 1/4$
	<i>w</i> ₃ =0.15	$w_3 = 0.16$	$w_3 = 0.20$	$w_3 = 1/4$
	$w_4 = 0.06$	$w_4 = 0.12$	$w_4 = 0.10$	$w_4 = 1/4$
n=5	<i>w</i> ₁ =0.45	$w_1 = 0.44$	$w_1 = 0.33$	$w_1 = 1/5$
	$w_2 = 0.26$	$w_2 = 0.22$	$w_2 = 0.27$	$w_2 = 1/5$
	<i>w</i> ₃ =0.16	$w_3 = 0.14$	$w_3 = 0.21$	$w_3 = 1/5$
	$w_4 = 0.09$	$w_4 = 0.11$	$w_4 = 0.12$	$w_4 = 1/5$
	$w_5 = 0.04$	$w_5 = 0.09$	$w_5 = 0.07$	$w_5 = 1/5$
n=6	<i>w</i> ₁ =0.41	$w_1 = 0.41$	$w_1 = 0.29$	$w_1 = 1/6$
	<i>w</i> ₂ =0.24	$w_2 = 0.21$	$w_2 = 0.24$	$w_2 = 1/6$
	<i>w</i> ₃ =0.16	$w_3 = 0.13$	$w_3 = 0.19$	$w_3 = 1/6$
	$w_4 = 0.10$	$w_4 = 0.10$	$w_4 = 0.14$	$w_4 = 1/6$
	$w_5 = 0.06$	$w_5 = 0.08$	$w_5 = 0.09$	$w_5 = 1/6$
	<i>w</i> ₆ =0.03	$w_6 = 0.07$	$w_6 = 0.05$	$w_6 = 1/6$
n=7	<i>w</i> ₁ =0.37	$w_1 = 0.39$	$w_1 = 0.25$	$w_1 = 1/7$
	<i>w</i> ₂ =0.23	$w_2 = 0.19$	$w_2 = 0.21$	$w_2 = 1/7$
	<i>w</i> ₃ =0.16	$w_3 = 0.13$	$w_3 = 0.18$	$w_3 = 1/7$
	$w_4 = 0.11$	$w_4 = 0.09$	$w_4 = 0.14$	$w_4 = 1/7$
	$w_5 = 0.07$	$w_5 = 0.08$	$w_5 = 0.11$	$w_5 = 1/7$
	$w_6 = 0.04$	$w_6 = 0.07$	$w_6 = 0.07$	$w_6 = 1/7$
	<i>w</i> ₇ =0.02	<i>w</i> ₇ =0.05	<i>w</i> ₇ =0.04	$w_7 = 1/7$

Roszkowska,, 2013

Step	Task	Mathematical representation
1	Input Data: The model begins with an ordinal ranking	for criteria <i>i</i> is $d_i \wedge d_1 = 0$ where it
•	Enough non-linearity: To still capture the relative impor	tance of higher-ranked criteria. Fore we have $d_1 \leq$
•	Not too extreme: To avoid marginalizing lower-ranked cr	riteria. = $d_2 \ge d_3 \ge$
		$\cdots d_n$
2	Calculate the Mean Rank (d): The mean rank is computed as the average of all given ranks.	$d = (\Sigma d_i) / n$
3	Compute the Central Tendency Measure ($ u_{\rm o}$): This	$\sqrt{\sum_{n=1}^{n} (d_{n} - \overline{d})^{2}}$
	ste c a regularization parameter to control the behaving logarithm function near zero	viour of the natural $-+d_{max}$
4	Group Tied Criteria (G_j): Criteria with identical ranks	Identify groups $G_1, G_2,, G_k$ such that all criteria
	distribution.	in group G_j have the same d_i value.
5	Determine Intermediate Weights (d_i) : A logarithmic transformation and a confidence score (β) are	$\hat{d}_{i} = d_{i} - v_{o} \times (1 + \beta) \times \ln(d_{i} - v_{o} + c),$
	β : linear scaling factor dampen/amplify the impact of the maintaining stability	logarithmic transformation
6	Calculate Final Weights (<i>w</i> _i): Weights are normalized	$w_{i} = (d_{i} / \Sigma (G_{j} \times d_{j})) \times 100, \forall i \in G_{j}$
	by summing over all group contributions and scaling	$\sum w_i = 1$

Uncertain decision-makers ($\beta = -0.5$)

Ordinal weights of 2 to 10 attributes

n	w ₁ (%)	w ₂ (%)	w ₃ (%)	w ₄ (%)	w ₅ (%)	w ₆ (%)	w ₇ (%)	w ₈ (%)	W9 (%)	w ₁₀ (%)
2	61.5	38.5								
3	42.1	31.6	26.3							
4	32.5	26.8	22.8	17.9						
5	26.2	23.5	20.5	17	12.8					
6	21.9	20.4	18.2	15.5	12.5	11.5				
7	18.8	18	16.5	14.6	12.5	10.8	8.8			
8	16.5	16	15	13.6	12	10.4	8.8	7.5		
9	14.8	14.5	13.8	12.7	11.5	10.1	8.8	7.5	6.3	3
10	13.5	13.3	12.8	12	11	9.9	8.8	7.6	6.4	4 5.5

Moderately confident decision-makers ($\beta = 0$)

Ordinal weights of 2 to 10 attributes

n	w ₁ (%)	w ₂ (%)	w ₃ (%)	w ₄ (%)	w ₅ (%)	w ₆ (%)	w ₇ (%)	w ₈ (%)	w ₉ (%)	w ₁₀ (%)
2	70.7	29.3								
3	52.6	31.6	15.8							
4	42.9	28.6	19	9.5						
5	36.4	27.3	18.2	12.1	6.1					
6	31.6	26.3	21.1	15.8	5.3	0				
7	28	24	20	16	8	4	0			
8	25	23.4	21.9	15.6	9.4	3.1	1.6	0		
9	22.9	22.9	20	17.1	11.4	4.3	1.4	0	0	
10	21	21	20	17	11	5	3	1	0	0

Highly confident decision-makers ($\beta = 1$)

Ordinal weights of 2 to 10 attributes

n	w ₁ (%)	w ₂ (%)	w ₃ (%)	w ₄ (%)	w ₅ (%)	w ₆ (%)	w ₇ (%)	w ₈ (%)	w ₉ (%)	w ₁₀ (%)
2	80.4	19.6								
3	60.2	30.1	9.7							
4	48.3	32.2	16.1	3.4						
5	40.2	30.1	20.1	6.7	2.9					
6	34.4	28.7	21.5	10.7	3.6	1.1				
7	30.1	26.9	21.6	13	6.2	2	0.2			
8	26.8	25.1	21.5	14.5	8.1	3.3	0.8	0		
9	24.2	23.6	21.2	15.3	9.6	4.6	1.6	0.3	0	
10	22.1	22.3	20.7	15.6	10.7	5.8	2.5	0.6	0.1	(

Weight for the first 3 ranked criteria with different confidence factors

	()	5 = 1.00)			(B	= 0.00)			(P	0.5)	
n	w ₁ (%)	w ₂ (%)	w ₃ (%)	n	w ₁ (%)	w ₂ (%)	w ₃ (%)	n	w ₁ (%)	w ₂ (%)	w ₃ (%)
2	80.4	19.6		2	70.7	29.3		2	61.5	38.5	
3	60.2	30.1	9.7	3	52.6	31.6	15.8	3	42.1	31.6	26.3
4	48.3	32.2	16.1	4	42.9	28.6	19	4	32.5	26.8	22.8
5	40.2	30.1	20.1	5	36.4	27.3	18.2	5	26.2	23.5	20.5
6	34.4	28.7	21.5	6	31.6	26.3	21.1	6	21.9	20.4	18.2
7	30.1	26.9	21.6	7	28	24	20	7	18.8	18	16.5
8	26.8	25.1	21.5	8	25	23.4	21.9	8	16.5	16	15
9	24.2	23.6	21.2	9	22.9	22.9	20	9	14.8	14.5	13.8
10	22.1	22.3	20.7	10	21	21	20	10	13.5	13.3	12.8

									Rank orderi	ng methods	
									Reciprocal	Rank Sum weight	Equal weight
		•							weight (RR)	(<i>RS</i>)	(<i>EW</i>)
			com	baris	son:				$w_1 = 0.67$	$w_1 = 067$	$w_1 = 1/2$
									$w_2 = 0.33$	$w_2 = 0.33$	$w_2 = 1/2$
									$w_1 = 0.55$	$w_1 = 0.50$	$w_1 = 1/3$
									$w_2 = 027$	$w_2 = 0.33$	$w_2 = 1/3$
									<i>w</i> ₃ =0.18	<i>w</i> ₃ =0.17	$w_3 = 1/3$
									$w_1 = 0.48$	$w_1 = 0.40$	$w_1 = 1/4$
	10/2	(0/)	(0.()	(6/)	(6.()	10(1)	10()		$w_2 = 0.24$	$w_2 = 0.30$	$w_2 = 1/4$
n	W ₁ (%)	W ₂ (%)	W3 (%)	W4 (%)	W ₅ (%)	W ₆ (%)	W ₇ (%)		$w_3 = 0.16$	$w_3 = 0.20$	$w_3 = 1/4$
2	61 5	38 5							$w_4 = 0.12$	$w_4 = 0.10$	$w_4 = 1/4$
2	01.5	30.5							$w_1 = 0.44$	$w_1 = 0.33$	$w_1 = 1/5$
3	42.1	31.6	26.3						$w_2 = 0.22$	$w_2 = 0.27$	$w_2 = 1/5$
									$w_3 = 0.14$	$w_3 = 0.21$	$w_3 = 1/5$
4	32.5	26.8	22.8	17.9					$w_4 = 0.11$	$w_4 = 0.12$	$w_4 = 1/5$
_									$w_5 = 0.09$	$w_5 = 0.07$	$w_5 = 1/5$
5	26.2	23.5	20.5	17	12.8				$w_1 = 0.41$	$w_1 = 0.29$	$w_1 = 1/6$
6	21.0	20.4	10.0	1E E	10 F	11 E			$w_2 = 0.21$	$w_2 = 0.24$	$w_2 = 1/6$
0	21.9	20.4	10.2	15.5	12.5	11.5			$w_3 = 0.13$	$w_3 = 0.19$	$w_3 = 1/6$
7	18.8	18	16.5	14.6	12.5	10.8	Ę	8.8	$w_4 = 0.10$	$w_4 = 0.14$	$w_4 = 1/6$
	10.0	10	1010		12.0	1010			$w_5 = 0.08$	$w_5 = 0.09$	$w_5 = 1/6$
									$w_6 = 0.07$	$w_6 = 0.05$	$w_6 = 1/6$
									$w_1 = 0.39$	$w_1 = 0.25$	$w_1 = 1 / /$
									$w_2 = 0.19$	$w_2 = 0.21$	$w_2 = 1 / /$
									$w_3 = 0.13$	$w_3 = 0.18$	$w_3 = 1 / /$
									$w_4 = 0.09$	$w_4 = 0.14$	$w_4 = 1 / /$
									$w_5 = 0.08$	$w_5 = 0.11$	$w_5 = 1 / /$
									$w_6 = 0.0 /$	$w_6 = 0.0 /$	$w_6 = 1 / /$
									$w_7 = 0.05$	$w_7 = 0.04$	$w_7 = 1/7$

Short about me:

- Teaching: Sociology of Disasters, Complex Adaptive Systems
- UN advisor for the disaster resilience and climate change adaptation projects
- Research profile: Disaster Resilience and Risk Management
- PhD in Complex Civil Systems: decision analysis and post-disaster infrastructure network
- Engineer by training !!
- Informal research interest: Neuroendocrinology and evolutionary biology
- What am I doing here? Because the MCDM community is very welcoming and forgiving!!!

Thank you very much for your attention

Questions?

Milad Zamanifar

Zamanifar@posto.de