1st Iberian Conference on Multi-Criteria Decision Making/Analysis (IMCDM/MCDA 2025)

Prioritising Municipal Photovoltaic Initiatives Using Multi-Criteria Decision Analysis

A case study concerning photovoltaics in Rajadell, Spain.

MUHAMMAD TANVEER UL ISLAM

CEGIST, Instituto Superior Técnico, Universidade de Lisboa Date: 8 May 2025

Structure

Literature review Renewable energies and MCDA

Knowledge gap

Case study Overview Actions Criteria Categories and parameters

Results Actions Priority Analysis and timeline proposal Implications

Background

Spanish framework

Conclusions Findings and limitations

Municipalities as Major CO₂ Emitters

Cities significantly contribute to greenhouse gas emissions; local actions are crucial to meet climate targets.

Solar PV: A Pillar of Sustainable Energy Transition

Photovoltaic initiatives offer scalable, clean energy solutions essential for sustainable development.

□ MCDA for Transparent Decision-Making

Employing Multi-Criteria Decision Analysis ensures fair and transparent prioritization of municipal projects.

Global warming

GHG emissions

Agricultural and industrial practices Deforestation Fossil fuel use

Energy sector

73% of GHG emissions

Climate agreements Paris Agreement REPowerEU

EU Covenant of Mayors for Climate & Energy

Local governments

MCDA model

Photovoltaic projects Reduction of local emissions Urgency of implementation Case study in Rajadell

2 Renewable energies

Solar PV

Mature technology Cost reduction Modularity Self-consumption Great relevance in Spain

2.2 Knowledge gap

Research areas

Power plant site selection Evaluation of energy sources Technology assessment Sustainability and policy assessment

MCDA techniques

TOPSIS AHP ELECTRE ANP PROMETHEE

Ranking (II, III) Choice (IS) Sorting (Tri)

Highlighted studies

(Thebault et al., 2022) (Neves et al., 2018)

3. Spanish framework

el

Spanish ectricity mix	40% Renewables 11% Solar energy	
PV systems	Stand-alone system PV power plant Self-consumption system	Individual Collective
Regulations	RD 244/2019 RD 15/2018 REBT	

MCDA

Multiple criteria

Problem types

Ranking Choice Sorting

ELECTRE Tri-nC

Qualitative evaluations Heterogeneity Arbitrariness and uncertainty

MCDA problem types

Pairwise comparison

Alternatives

Reference actions

 $A = \{ a_1, a_2, \dots, a_i \} \longleftrightarrow B = \{ B_1, B_2, \dots, B_n \}$

Performance $g_i(a_i)$

Criteria

$$F = \{ g_1, g_2, \dots, g_n \} n \ge 3$$

w_i > 0, j = 1, ..., n

Assignment

Categories

 $C = \{ C_1, C_2, \dots, C_n \} \ q \ge 2$

Preference relations

Indifference

Weak preference

Strict preference

 $g_i(a) - g_i(a_i) \leq q_i$ $q_{i} < g_{i}(a) - g_{i}(a_{i}) \le p_{i}$ $g_{i}(a) - g_{i}(a_{i}) > P_{i}$

Parameters

Credibility level λ

Veto, preference, and indifference thresholds $V_i \ge P_j \ge Q_j \ge 0$

Rajadell

1000 inhabitants Energy consumed | 6000 MWh Emissions | 1800 tonnes

Goals2030 | Emissions reduction by 55%2050 | Climate neutrality

Global irradiation for horizontally mounted PV modules.

Map of Rajadell with its respective population centres.

Local council Catalan Water Agency

Private

Homeowners Local businesses Companies

Structures

Investors

Roof-added **Free-standing**

Mobile

Fixed

Solar tracking

Sectors

Residential Agricultural Catering and tourism Electric transport Power generation

Systems

Grid-connected Self-consumption Commercial applications Energy community

Different criteria used in MCDA research applied to photovoltaics.

cal	Technical maturity 10.65% [†] Administrative and bureaucratic complexity 14.53% [‡] Solar incidence 14.53% [†]						
Economic Specific insta			ial imp ck per ic insta	bact 8.06% iod 15.83% allation cost 10.65%			
Environmental Envi		Envi Annı	ironmental impact 8.06% ual avoidance of emissions 10.65%				
		Soci	al	Social acceptance 5.46% Citizen involvement 1.58%			

5.4 Categories and parameters

Urgency of action	Implementation b
Low	2050
Medium	2030
High	2026
	Urgency of action Low Medium High

Categories of the model.

6 Actions Priority

Action	PV Initiative	Urgency Category	Key Strengths	Key Weaknesses
a1	PV self-consumption in residences	C2–C3	High CO ₂ reduction (273 tons/year), citizen involvement	Long payback (7.58 yea
a2	PV self-consumption in local buildings	C2	Low cost (€1,296/year)	Low emissions reduction (15.6 tons CO ₂)
a3	Solar street lighting	C1	Improves public infrastructure	High cost (€25,466 loss low impact
a4	Self-consumption at sewage plant	C2–C3	Efficient (1.73 €/Wp), moderate CO ₂ savings (12.5 tons)	Limited citizen engager
а5	PV self-consumption in livestock farms	C2–C3	Supports agriculture, moderate cost (€7,615/year)	Niche applicability
a6	Solar-powered water pumping system	C2	High energy efficiency (1,984 kWh/kWp)	Technical complexity (tracking system)
a7	Local community solar farm	C 3	Highest urgency: 37 tons CO ₂ reduction, 6.7-yr payback	Administrative hurdles
a8	Self-consumption in local businesses	C2–C3	Balanced cost/benefit (€8,660/year, 27 tons CO ₂)	Requires business buy-
a9	Solar-powered vehicle charging station	C1–C2	Future-proof technology	High cost (€2,407 loss) immature market
a10	Utility-scale solar farm (1.5 MW)	C2	Massive CO ₂ reduction (732 tons/year)	Vetoed: Low social acceptance
			21	

6.2 Analysis and timeline proposal

Classification of alternatives according to their urgency of implementation.

proposal.

Goals

2030 | Emissions reduction by 55% 2050 | Climate neutrality

Local policy recommendations

Tax benefits PV adoption in municipal buildings

Achievements by 2030

Without solar farm - 21.43% With solar farm - 61.37%

Policy improvements

Rural localities Energy communities Large-scale solar PV

Main findings

Relevance of PV technology Potential for improving PV performance Involvement of many stakeholders

Future research

Multiple Decision-makers Adaptation to other contexts

Main limitations

Potential bias Knowledge of data

Prioritising Municipal Photovoltaic Initiatives Using Multi-Criteria **Decision Analysis**

A case study concerning photovoltaics in Rajadell, Spain.

THANK YOU

