

WIP: A Transition-Centric Meta-Framework for Sustainability Challenges

Prof. Dr. Robert Edgell

SUNY Polytechnic Institute, College of Business Sustainable Aerospace Energy Center (SAEC)

1st Iberian Conference on Multi-Criteria Decision Making/Analysis (IMCDM/MCDA 2025) May 8–9, 2025 | Coimbra, Portugal

rt A. Edgell 2025. This

Overview

Why? How? What? Questions?

A Strategic Approach to Sustainability Decision-Making

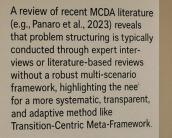
Sustainability transitions are messy. Think: conflicting goals, wicked trade-offs, uncertainty ...

Interdisciplinarity vs. disciplinarity

Problem-Structuring Question: Where should MCDA focus within a sustainability transition?

Argument: Shift selection from disciplinary literature review \rightarrow to a structured, transition-centric method.

What is Missing in Current Approaches

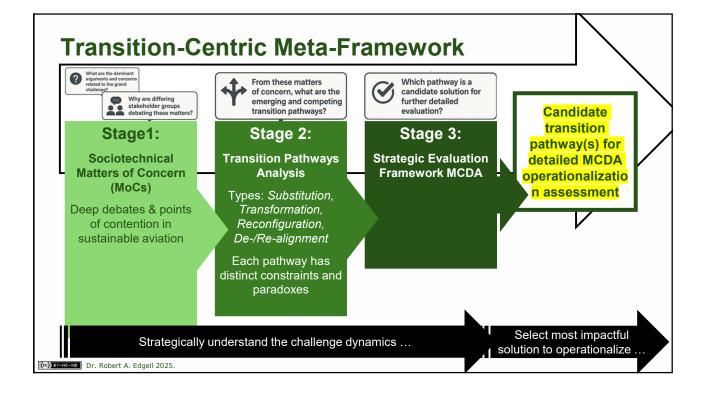

Literature reviews and expert-driven ad hoc approaches dominate ...

Panaro et al. (2023); Afsar et al. (2023): Current MCDA problem structuring is driven by literature reviews or ad hoc expert opinion—lacking robustness, repeatability, and adaptability.

Result: Selection bias, lack of clarity, narrow disciplinary focus.

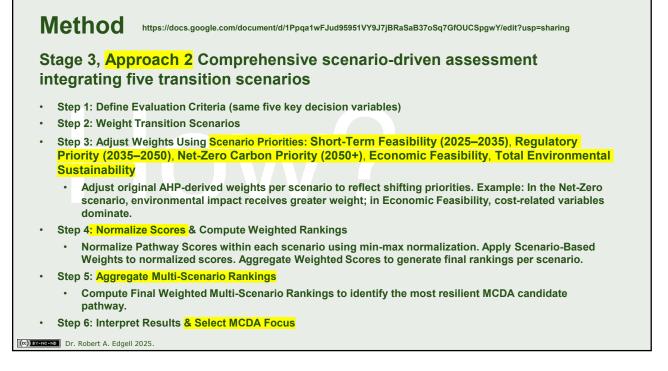
Sovacool et al. (2020): "Research must show greater attention to diversity, theoretical triangulation, and emerging concerns at the nexus of technology and society."

(cc) BY-NC-ND Dr. Robert A. Edgell 2025.



A Transition-Centric Meta-Framework

Objective: Build a decision-structuring meta-framework to guide MCDA use in complex sustainability transitions.



ines key debates & trade-offs in sustainable aviation cognizes paradoxes (e.g., economic feasibility vs. sustainability trade-offs) culates <mark>term frequences (TFIDFs)</mark> via computational text analysis using Quanteda 2: Maps Transition Pathways (Geel's MLP)
cognizes paradoxes (e.g., economic feasibility vs. sustainability trade-offs) culates <mark>term frequences (TFIDFs)</mark> via computational text analysis using Quanteda
culates term frequences (TFIDFs) via computational text analysis using Quanteda
2: Maps Transition Bathways (Gool's MLP)
2. Maps Transition Fathways (Geers MLF)
egorizes multiple, competing pathways within sustainability transitions: Substitution, transformation, onfiguration, de-/re-alignment (Geels & Schot)
ives pathways by clustering high-TFIDF MoCs and aligning them with Geels & Schot's four transition hway types, ensuring both empirical grounding and theoretical coherence
3: Introduces <mark>Robust Multi-Scenario Decision Analysis (RMSDA),</mark> offering:
proach 1: Streamlined Analytical Hierarchy Process AHP-based ranking method
proach 2: Comprehensive scenario-driven assessment integrating five transition scenarios
AHP computations were performed in Excel using standard formulas for pairwise comparison malization and weight derivation (consistent with Saaty's method)

Method

Case Application

- The framework is applied to Sustainable Aviation
 transitions
- The study provides a scalable, generalizable methodology for selecting MCDM/A applications across sustainability domains

What?

(cc) BY-NO-ND Dr. Robert A. Edgell 2025.

Results: Stage 1

Matters of Concern (MoCs)

Synchronizing TFIDF 17.71 (n=141)

Operationalizing TFIDF 12.49 (n=141)

Prognosticating TFIDF 9.34 (n=141)

Innovating TFIDF 7.03 (n=141)

(cc) BY-NC-NO Dr. Robert A. Edgell 2025.

Concise Definition

Centers on public perception, consumer acceptance, and the alignment of investment funding with technological advancements to drive the successful adoption of green aviation solutions.

Examines the economic viability and operational efficiency of sustainable aviation, balancing environmental goals with airline profitability, fleet management, airport transformations, and fuel optimization.

Addresses the role of regulatory frameworks, global cooperation, and policy foresight in shaping the transition to sustainable aviation while mitigating risks of regulatory stagnation or market fragmentation.

Focuses on the development and integration of novel aviation technologies, such as electric and hydrogen propulsion, alongside the infrastructure challenges required for their scalability and widespread adoption.

Results: Stage 2 Pathways

Five Emerging Pathways with Type (Means) and Trajectory (Aim)

Pathway

Sustainable Aviation Fuels (SAFs)

Hydrogen-Powered Aviation

Electrification of Aviation

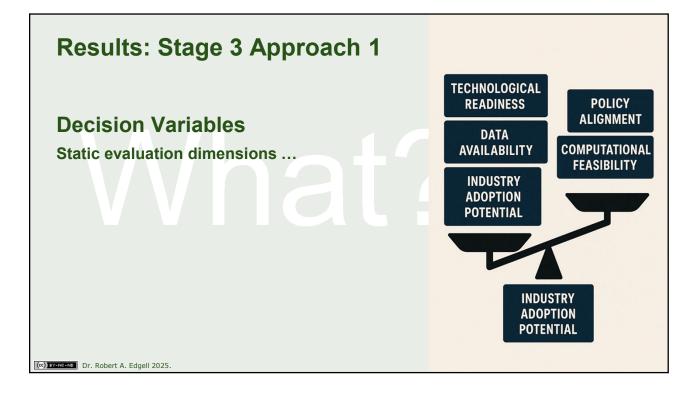
Advanced Air Mobility (AAM/UAM) Aircraft Efficiency and Fleet Optimization (AEFO) Transition Pathway Type Substitution / Reconfiguration De- and Re-alignment

Substitution

Reconfiguration

Transformation

Trajectory

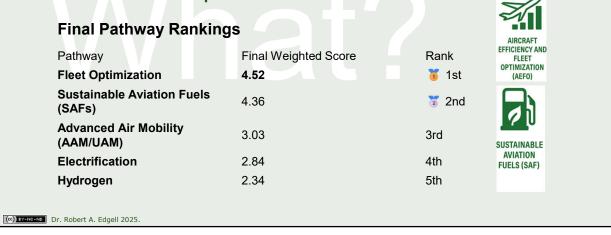

Incremental to Evolutionary

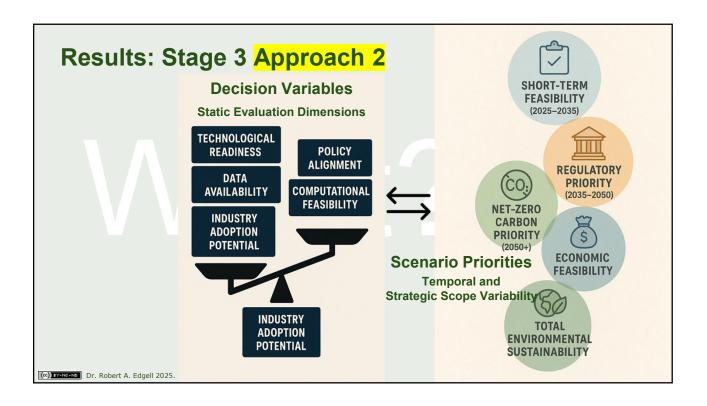
Disruptive to Radical

Disruptive

Emergent to Disruptive

Stabilizing to Incremental


Results: Stage 3 Approach 1


Decision Variable Definitions (for pathway evaluation)

Decision Variable	Definition	High Score (9)	Low Score (1)	
Technological Readiness	Maturity of the technology and readiness for deployment.	Proven, market-ready tech; high TRL (≥ 8–9)	Early-stage, conceptual, or lab-based tech (TRL ≤ 4)	
Data Availability	Accessibility and quality of supporting data.	Rich, robust datasets (e.g., LCA, field trials, policy models)	Sparse, unreliable, or missing data	
Policy Alignment	Consistency with Strong regulatory support, current/emerging regulations, incentives, and policy alignment agendas.		No supportive policies or potential regulatory resistance	
Computational Feasibility	Ease of modeling, simulation, and analysis using MCDA tools.	Simple to compute, stable models, few assumptions needed	Complex models, high uncertainty, or computational intractability	
Industry Adoption Potential	Likelihood of acceptance and implementation by stakeholders and markets.	Strong market pull, supply chain readiness, infrastructure compatibility	Unclear demand, resistant incumbents, or lack of enabling infrastructure	

Results: Stage 3 Approach 1

Under a streamlined AHP ranking approach, Fleet Optimization emerged as the top-ranked pathway due to high scores in technological readiness, economic feasibility, industry adoption, and regulatory readiness—despite lower environmental impact.

Results: Stage 3 Approach 2

Scenario Definitions:

Scenario	Description		
Short-Term Feasibility (2025–2035)	Focus on technologies that are immediately ready, scalable, and industry-compatible		
Regulatory Priority (2035–2050)	Aligns with policy mandates, compliance frameworks, and infrastructure shifts		
Net-Zero Carbon Priority (2050+)	Prioritizes full decarbonization and deep environmental performance		
Economic Feasibility	Focuses on investment costs, return on investment, and cost-effectiveness		
Total Environmental Sustainability	Encompasses emissions, resource use, and long-term ecological impact		
	of the static Decision Variables' criteria and introduce normativ is like <i>under a specific temporal-scope lens</i> .		

(cc) BY-NC-ND Dr. Robert A. Edgell 2025.

Results: Stage 3 Approach 2

This RMSDA approach shows that there's no single best solution across all scenarios—highlighting the trade-offs and context-dependency of sustainability decision-making in aerospace.

Final Scenario-Based RMSDA Ranking Matrix (Table 5.1 – Using min-max normalization)

Pathway	Short-Term Feasibility (2025–2035)	Regulatory Priority (2035– 2050)	Net-Zero Carbon Priority (2050+)	Economic Feasibility	Environmental Sustainability
SAFs	👅 1st	👅 1st	2nd	2nd	4th
Fleet Optimization	2nd	3rd	5th	👅 1st	2nd
AAM/UAM	3rd	2nd	3rd	4th	3rd
Electrification	4th	4th	👅 1st	5th	👅 1st
Hydrogen	5th	5th	4th	3rd	5th
(cc)) BY-NO-NO Dr. Robert A. Edgell 202	25.				

Results: Stage 3 Approach 2 Key Scenario-Based Takeaways • SAFs are the top performer in both short-term feasibility and regulatory priority due to current infrastructure compatibility, policy support, and industry momentum Fleet Optimization wins under economic feasibility, with its low-cost, high-readiness profile Electrification dominates under environmental sustainability and net-zero carbon scenarios but is held back in short-term and economic contexts due to infrastructure and technology maturity Hydrogen consistently ranks low due to readiness and infrastructure constraints—despite its long-term potential **AAM/UAM** only niche impacts SUSTAINABLE ADVANCED ELECTRIFICATION HYDROGEN-AIRCRAFT AVIATION EFFICIENCY AND **OF AVIATION** POWERED AIR MOBILITY WIP: Test used RAE judgements only. FUELS (SAF) FLEET AVIATION OPTIMIZATION (AFFO) (cc) BY-NC-ND Dr. Robert A. Edgell 2025

13